Carbon Dioxide Sequestered Concrete
Carbon dioxide, CO2 accounts for most of the emission from all the types of greenhouse gasses in the world. The ability of CO2 to remain longer than other greenhouse gases and the convenience of producing CO2 has resulted in its high projection in a yearly manner. The prime factor for the emission o...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Penerbit UTHM
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon dioxide, CO2 accounts for most of the emission from all the types of greenhouse gasses in the world. The ability of CO2 to remain longer than other greenhouse gases and the convenience of producing CO2 has resulted in its high projection in a yearly manner. The prime factor for the emission of CO2 are from the actions of human beings. One such human act is the concrete industry. Total emissions from the concrete industry could therefore contribute as much as 8% of global CO2 emissions. Sequestered CO2 in concrete can provide an impact on reducing the carbon footprint and is also able to improve the compressive strength of concrete. During this process, the sequestered carbon dioxide chemically reacts with cement to produce a mineral, trapping carbon dioxide gas in the concrete. Hence, sequestering carbon dioxide gas in concrete does not only on a bigger scale reduces carbon footprint, but it also reduces the impact the construction industry has on the environment. This paper presents a detailed review on the chemical reaction that takes place during the sequestration of carbon dioxide and the research published on the effects of carbon dioxide sequestered concrete on its properties. The impact this process has on the concrete industry and the environment is discussed in this paper. � 2020. Universiti Tun Hussein Onn Malaysia Publisher's Office. All Rights Reserved. |
---|