Organosoluble starch derivative as quasi-solid electrolytes in DSSC: Unravelling the synergy between electrolyte rheology and photovoltaic properties
Adhesives; Biomechanics; Cellulose; Charge transfer; Efficiency; Elasticity; Electrochemical impedance spectroscopy; Gels; Polyelectrolytes; Potentiometric sensors; Rheology; Solid electrolytes; Starch; Adhesive properties; Charge transfer process; Electrode/electrolyte interfaces; Hydroxyethyl cell...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Elsevier Ltd
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Adhesives; Biomechanics; Cellulose; Charge transfer; Efficiency; Elasticity; Electrochemical impedance spectroscopy; Gels; Polyelectrolytes; Potentiometric sensors; Rheology; Solid electrolytes; Starch; Adhesive properties; Charge transfer process; Electrode/electrolyte interfaces; Hydroxyethyl cellulose; Hydroxyethyl celluloses (HEC); Photovoltaic property; Polymer gel electrolytes; Rheological analysis; Dye-sensitized solar cells; cellulose; dye; electrolyte; fuel cell; organic compound; photovoltaic system; rheology; starch; Adhesives; Cellulose; Charge Transfer; Efficiency; Elasticity; Gels |
---|