Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia

artificial intelligence; artificial neural network; cloud cover; meteorology; prediction; sea level change; East Malaysia; Kota Kinabalu; Kudat; Malaysia; Sabah

Saved in:
Bibliographic Details
Main Authors: Muslim T.O., Ahmed A.N., Malek M.A., Afan H.A., Ibrahim R.K., El-Shafie A., Sapitang M., Sherif M., Sefelnasr A.
Other Authors: 57215584776
Format: Article
Published: MDPI 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-25581
record_format dspace
spelling my.uniten.dspace-255812023-05-29T16:11:14Z Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia Muslim T.O. Ahmed A.N. Malek M.A. Afan H.A. Ibrahim R.K. El-Shafie A. Sapitang M. Sherif M. Sefelnasr A. El-Shafie A. 57215584776 57214837520 55636320055 56436626600 57188832586 57207789882 57215211508 7005414714 6505592467 16068189400 artificial intelligence; artificial neural network; cloud cover; meteorology; prediction; sea level change; East Malaysia; Kota Kinabalu; Kudat; Malaysia; Sabah This study aims to investigate the impact of meteorological parameters such as wind direction, wind speed, rainfall, and mean cloud cover on sea-level rise projections for different time horizons-2019, 2023, 2028, 2048, and 2068-at three stations located in Kudat, Sandakan, and Kota Kinabalu, which are districts in the state of Sabah, Malaysia. Herein, two different scenarios, scenario1 (SC1) and scenario2 (SC2), were investigated, with each scenario comprising a different combination of input parameters. This study proposes two artificial intelligence techniques: a multilayer perceptron neural network (MLP-ANN) and an adaptive neuro-fuzzy inference system (ANFIS). Furthermore, three evaluation indexes were adopted to assess the performance of the proposed models. These indexes are the correlation coefficient, root mean square error, and scatter index. The trial and error method were used to tune the hyperparameters: the number of neurons in the hidden layer, training algorithms, transfer and activation functions, and number and shape of the membership function for the proposed models. Results show that for the above mentioned three stations, the ANFIS model outperformed MLP-ANN by 0.740%, 6.23%, and 9.39%, respectively. To assess the uncertainties of the best model, ANFIS, the percentage of observed data bracketed by 95 percent predicted uncertainties (95PPUs) and the band width of 95 percent confidence intervals (d-factors) are selected. The obtained values bracketed by 95PPUs are show about 75.2%, 77.4%, 76.8% and the d-factor has a value of 0.27, 0.21 and 0.23 at Kudat, Sandakan and Kota Kinabalu stations, respectively. A comparison between the two scenarios shows that SC1 achieved a high level of accuracy on Kudat and Sandakan data, whereas SC2 outperformed SC1 on Kota Kinabalu data. � 2020 by the authors. Final 2023-05-29T08:11:14Z 2023-05-29T08:11:14Z 2020 Article 10.3390/su12031193 2-s2.0-85081242286 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081242286&doi=10.3390%2fsu12031193&partnerID=40&md5=0806d1b05da5b660bf387a9c08a53922 https://irepository.uniten.edu.my/handle/123456789/25581 12 3 1193 All Open Access, Gold, Green MDPI Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description artificial intelligence; artificial neural network; cloud cover; meteorology; prediction; sea level change; East Malaysia; Kota Kinabalu; Kudat; Malaysia; Sabah
author2 57215584776
author_facet 57215584776
Muslim T.O.
Ahmed A.N.
Malek M.A.
Afan H.A.
Ibrahim R.K.
El-Shafie A.
Sapitang M.
Sherif M.
Sefelnasr A.
El-Shafie A.
format Article
author Muslim T.O.
Ahmed A.N.
Malek M.A.
Afan H.A.
Ibrahim R.K.
El-Shafie A.
Sapitang M.
Sherif M.
Sefelnasr A.
El-Shafie A.
spellingShingle Muslim T.O.
Ahmed A.N.
Malek M.A.
Afan H.A.
Ibrahim R.K.
El-Shafie A.
Sapitang M.
Sherif M.
Sefelnasr A.
El-Shafie A.
Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia
author_sort Muslim T.O.
title Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia
title_short Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia
title_full Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia
title_fullStr Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia
title_full_unstemmed Investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in Sabah, Malaysia
title_sort investigating the influence of meteorological parameters on the accuracy of sea-level prediction models in sabah, malaysia
publisher MDPI
publishDate 2023
_version_ 1806427633668325376
score 13.211869