Response Surface Optimization of Multilayer Graphene Growth on Alumina-Supported Bimetallic Cobalt�Nickel Substrate

This study investigates the optimization of multilayer graphene (MLG) growth on Co�Ni/Al2O3 substrate. The MLG synthesized by chemical vapor deposition technique (CVD) was characterized using various instrument techniques. The surface area and pore volume of the MLG were estimated as ~ 642�m2/g and...

Full description

Saved in:
Bibliographic Details
Main Authors: Alsaffar M.A., Rashid S.A., Ayodele B.V., Hamidon M.N., Yasin F.M., Ismail I., Hosseini S., Babadi F.E.
Other Authors: 57210601717
Format: Article
Published: Springer Science and Business Media Deutschland GmbH 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the optimization of multilayer graphene (MLG) growth on Co�Ni/Al2O3 substrate. The MLG synthesized by chemical vapor deposition technique (CVD) was characterized using various instrument techniques. The surface area and pore volume of the MLG were estimated as ~ 642�m2/g and ~ 2.7�cm3/g, respectively. The Raman spectrometric analysis showed evidence of MLG. The effects of parameters such as temperature, Co�Ni composition and ethanol flow rate were investigated using response surface methodology (RSM) and central composite design. The maximum MLG yield of 77% was attained at optimum conditions of 800��C, Co�Ni composition of 0.3/0.7 and ethanol flow rate of 11�ml/min. The analysis of variance (ANOVA) results showed that the RSM quadratic model is significant with a p value ' 0.0001. The coefficient of determination (R2) values of 0.9694 revealed the reliability of the RSM model. The potential of CVD as a technique to synthesize MLG growth of a highly ordered crystallinity structure has been demonstrated in this study. The resulting MLG films are promising materials for the use in improving graphene-based electronics, sensing and energy devices. � 2020, King Fahd University of Petroleum & Minerals.