Failure analysis of various fiberglass cross-arm designs under multi-axial loading
This study investigated the type of failure modes of different cross-arm designs under multi-axial static loading. The failure modes were numerically predicted from real-scale finite-element models of cross-arm integrated with a Hashin damage subroutine. Three finite-element models of cross-arm were...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Published: |
IOP Publishing Ltd
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study investigated the type of failure modes of different cross-arm designs under multi-axial static loading. The failure modes were numerically predicted from real-scale finite-element models of cross-arm integrated with a Hashin damage subroutine. Three finite-element models of cross-arm were considered; a model with standard cross-arm design, a standard design engaged with braces, and a standard design engaged with sleeves. The failure analysis of the composite cross-arm was focused on the location and type of failure of the structure upon its application. This investigation revealed that under the applied load, the cross-arm with installed sleeves exhibited the lowest total deflection of 0.21 m. Every cross-arm design exhibited fiber failure due to the tension and compression mode, regardless of the support system installed. Additionally, the installation of sleeves and braces on the cross-arm structure successfully reduced the number of areas associated to failure. � Published under licence by IOP Publishing Ltd. |
---|