Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification

Chaotic systems; DC motors; Heuristic algorithms; Optimization; Benchmark functions; Chaotic behaviors; Convergence speed; Evaluation function; Meta-heuristic optimizations; Non-parametric statistical tests; Optimization problems; Parameters identification; Parameter estimation

Saved in:
Bibliographic Details
Main Authors: Yousri D., Allam D., Babu T.S., AbdelAty A.M., Radwan A.G., Ramachandaramurthy V.K., Eteiba M.B.
Other Authors: 56688582500
Format: Article
Published: Springer Science and Business Media Deutschland GmbH 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-25224
record_format dspace
spelling my.uniten.dspace-252242023-05-29T16:07:26Z Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification Yousri D. Allam D. Babu T.S. AbdelAty A.M. Radwan A.G. Ramachandaramurthy V.K. Eteiba M.B. 56688582500 55940454800 56267551500 57191328816 7103379659 6602912020 6603527538 Chaotic systems; DC motors; Heuristic algorithms; Optimization; Benchmark functions; Chaotic behaviors; Convergence speed; Evaluation function; Meta-heuristic optimizations; Non-parametric statistical tests; Optimization problems; Parameters identification; Parameter estimation Meta-heuristic optimization algorithms are the new gate in solving most of the complicated nonlinear systems. So, improving their robustness, reliability, and convergence speed is the main target to meet the requirements of various optimization problems. In the current work, three different fractional-order chaos maps (FC-maps), which have been introduced recently, are incorporated with the fundamental flower pollination algorithm to tune its parameters adaptively. These maps are fractional logistic map, fractional sine map, fractional tent map, and their integer-order versions. As a result, fractional chaotic FPA (FC-FPA) is proposed. The FC-FPA has been mathematically tested over 10-, 30-, 50-, and 100-dimensional CEC 2017 benchmark functions. Moreover, the influence of merging FC-maps with FPA is investigated in case of increasing the number of maximum evaluation functions based on the ten functions of CEC 2020. Additionally, to assess the superiority of the proposed FC-FPA algorithm for more complicated optimization problems, it has been tested to extract the parameters of different chaotic systems with and without added noise. In addition, it is tested on the identification of the corresponding parameters for the chaotic behavior in brush-less DC motor. The results of the fractional version of CFPA are compared with that of integer CFPA and standard FPA via an extensive statistical analysis. Furthermore, a nonparametric statistical test is employed to affirm the superiority of the proposed fractional variants of CFPA. It is evident that the performance of FPA is highly influenced by integrating the fractional-order chaos maps as the introduced FC-FPA variants provide a better accurate and more consistent results as well as a higher speed of convergence especially upon using the fractional sine map. � 2020, Springer-Verlag London Ltd., part of Springer Nature. Final 2023-05-29T08:07:26Z 2023-05-29T08:07:26Z 2020 Article 10.1007/s00521-020-04906-7 2-s2.0-85084288542 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084288542&doi=10.1007%2fs00521-020-04906-7&partnerID=40&md5=80b46535ecc4a9cf40b6cfa4a78acc67 https://irepository.uniten.edu.my/handle/123456789/25224 32 20 16291 16327 Springer Science and Business Media Deutschland GmbH Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Chaotic systems; DC motors; Heuristic algorithms; Optimization; Benchmark functions; Chaotic behaviors; Convergence speed; Evaluation function; Meta-heuristic optimizations; Non-parametric statistical tests; Optimization problems; Parameters identification; Parameter estimation
author2 56688582500
author_facet 56688582500
Yousri D.
Allam D.
Babu T.S.
AbdelAty A.M.
Radwan A.G.
Ramachandaramurthy V.K.
Eteiba M.B.
format Article
author Yousri D.
Allam D.
Babu T.S.
AbdelAty A.M.
Radwan A.G.
Ramachandaramurthy V.K.
Eteiba M.B.
spellingShingle Yousri D.
Allam D.
Babu T.S.
AbdelAty A.M.
Radwan A.G.
Ramachandaramurthy V.K.
Eteiba M.B.
Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
author_sort Yousri D.
title Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
title_short Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
title_full Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
title_fullStr Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
title_full_unstemmed Fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
title_sort fractional chaos maps with flower pollination algorithm for chaotic systems� parameters identification
publisher Springer Science and Business Media Deutschland GmbH
publishDate 2023
_version_ 1806428297158983680
score 13.223943