Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach
This study focuses on the non-linear effect of gas hourly space velocity (GHSV), oxygen (O2) concentration in the feed, the reaction temperature, and the CH4/CO2 ratio on hydrogen production by catalytic methane dry reforming using artificial neural networks (ANN). Ten different ANN models were conf...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference Paper |
Published: |
IOP Publishing Ltd
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-25062 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-250622023-05-29T16:06:37Z Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach Alsaffar M.A. Mageed A.K. Abdel Ghany M.A.R. Ayodele B.V. Mustapa S.I. 57210601717 57202098304 57215843327 56862160400 36651549700 This study focuses on the non-linear effect of gas hourly space velocity (GHSV), oxygen (O2) concentration in the feed, the reaction temperature, and the CH4/CO2 ratio on hydrogen production by catalytic methane dry reforming using artificial neural networks (ANN). Ten different ANN models were configured by varying the hidden neurons from 1 to 10. The various ANN model architecture was tested using 30 datasets. The ANN model with the topology of 4-9-2 resulted in the best performance with the sum of square error (SSE) of 0.076 and coefficient of determination (R2) greater than 0.9. The predicted hydrogen yield and the CH4 conversions by the optimized ANN model were in close agreement with the observed values obtained from the experimental runs. The level of importance analysis revealed that all the parameters significantly influenced the hydrogen yield and the CH4 conversion. However, the reaction temperature with the highest level of importance was adjudged the parameter with the highest level of influence on the methane dry reforming. The study demonstrated that ANN is a robust tool that can be employed to investigate predictive modeling and determine the level of importance of parameters on methane dry reforming. � 2020 Institute of Physics Publishing. All rights reserved. Final 2023-05-29T08:06:37Z 2023-05-29T08:06:37Z 2020 Conference Paper 10.1088/1757-899X/991/1/012078 2-s2.0-85099149615 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85099149615&doi=10.1088%2f1757-899X%2f991%2f1%2f012078&partnerID=40&md5=55875b8ab7d6bb1a45c65fad013d9aa2 https://irepository.uniten.edu.my/handle/123456789/25062 991 1 12078 All Open Access, Gold IOP Publishing Ltd Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
This study focuses on the non-linear effect of gas hourly space velocity (GHSV), oxygen (O2) concentration in the feed, the reaction temperature, and the CH4/CO2 ratio on hydrogen production by catalytic methane dry reforming using artificial neural networks (ANN). Ten different ANN models were configured by varying the hidden neurons from 1 to 10. The various ANN model architecture was tested using 30 datasets. The ANN model with the topology of 4-9-2 resulted in the best performance with the sum of square error (SSE) of 0.076 and coefficient of determination (R2) greater than 0.9. The predicted hydrogen yield and the CH4 conversions by the optimized ANN model were in close agreement with the observed values obtained from the experimental runs. The level of importance analysis revealed that all the parameters significantly influenced the hydrogen yield and the CH4 conversion. However, the reaction temperature with the highest level of importance was adjudged the parameter with the highest level of influence on the methane dry reforming. The study demonstrated that ANN is a robust tool that can be employed to investigate predictive modeling and determine the level of importance of parameters on methane dry reforming. � 2020 Institute of Physics Publishing. All rights reserved. |
author2 |
57210601717 |
author_facet |
57210601717 Alsaffar M.A. Mageed A.K. Abdel Ghany M.A.R. Ayodele B.V. Mustapa S.I. |
format |
Conference Paper |
author |
Alsaffar M.A. Mageed A.K. Abdel Ghany M.A.R. Ayodele B.V. Mustapa S.I. |
spellingShingle |
Alsaffar M.A. Mageed A.K. Abdel Ghany M.A.R. Ayodele B.V. Mustapa S.I. Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach |
author_sort |
Alsaffar M.A. |
title |
Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach |
title_short |
Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach |
title_full |
Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach |
title_fullStr |
Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach |
title_full_unstemmed |
Elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: An artificial intelligence approach |
title_sort |
elucidating the non-linear effect of process parameters on hydrogen production by catalytic methane reforming: an artificial intelligence approach |
publisher |
IOP Publishing Ltd |
publishDate |
2023 |
_version_ |
1806426075229585408 |
score |
13.222552 |