Application of markov model to estimate individual condition parameters for transformers

Carbon dioxide; Carbon monoxide; Electric breakdown; Ethylene; IEEE Standards; Markov processes; Nonlinear programming; Probability distributions; Statistical tests; Absolute error; Chi-square tests; Condition parameters; Condition-based monitoring; Markov model; Non-linear optimization; Parameter e...

Full description

Saved in:
Bibliographic Details
Main Authors: Selva A.M., Azis N., Yahaya M.S., Ab Kadir M.Z.A., Jasni J., Ghazali Y.Z.Y., Talib M.A.
Other Authors: 57203742582
Format: Article
Published: MDPI AG 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-24176
record_format dspace
spelling my.uniten.dspace-241762023-05-29T14:56:26Z Application of markov model to estimate individual condition parameters for transformers Selva A.M. Azis N. Yahaya M.S. Ab Kadir M.Z.A. Jasni J. Ghazali Y.Z.Y. Talib M.A. 57203742582 56120698200 36083783000 25947297000 25632671500 55336569600 36609320500 Carbon dioxide; Carbon monoxide; Electric breakdown; Ethylene; IEEE Standards; Markov processes; Nonlinear programming; Probability distributions; Statistical tests; Absolute error; Chi-square tests; Condition parameters; Condition-based monitoring; Markov model; Non-linear optimization; Parameter estimation This paper presents a study to estimate individual condition parameters of the transformer population based on Markov Model (MM). The condition parameters under study were hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), dielectric breakdown voltage, interfacial tension, colour, acidity, water content, and 2-furfuraldehyde (2-FAL). First, the individual condition parameter of the transformer population was ranked and sorted based on recommended limits as per IEEE Std. C57. 104-2008 and IEEE Std. C57.106-2015. Next, the mean for each of the condition parameters was computed and the transition probabilities for each condition parameters were obtained based on non-linear optimization technique. Next, the future states probability distribution was computed based on the MM prediction model. Chi-square test and percentage of absolute error analysis were carried out to find the goodness-of-fit between predicted and computed condition parameters. It is found that estimation for majority of the individual condition parameter of the transformer population can be carried out by MM. The Chi-square test reveals that apart from CH4 and C2H4, the condition parameters are outside the rejection region that indicates agreement between predicted and computed values. It is also observed that the lowest and highest percentages of differences between predicted and computed values of all the condition parameters are 81.46% and 98.52%, respectively. � 2018 by the authors. Final 2023-05-29T06:56:26Z 2023-05-29T06:56:26Z 2018 Article 10.3390/en11082114 2-s2.0-85052822566 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85052822566&doi=10.3390%2fen11082114&partnerID=40&md5=5ed4887c5ad9d19d521c2c157e8ff4c6 https://irepository.uniten.edu.my/handle/123456789/24176 11 8 2114 All Open Access, Gold, Green MDPI AG Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Carbon dioxide; Carbon monoxide; Electric breakdown; Ethylene; IEEE Standards; Markov processes; Nonlinear programming; Probability distributions; Statistical tests; Absolute error; Chi-square tests; Condition parameters; Condition-based monitoring; Markov model; Non-linear optimization; Parameter estimation
author2 57203742582
author_facet 57203742582
Selva A.M.
Azis N.
Yahaya M.S.
Ab Kadir M.Z.A.
Jasni J.
Ghazali Y.Z.Y.
Talib M.A.
format Article
author Selva A.M.
Azis N.
Yahaya M.S.
Ab Kadir M.Z.A.
Jasni J.
Ghazali Y.Z.Y.
Talib M.A.
spellingShingle Selva A.M.
Azis N.
Yahaya M.S.
Ab Kadir M.Z.A.
Jasni J.
Ghazali Y.Z.Y.
Talib M.A.
Application of markov model to estimate individual condition parameters for transformers
author_sort Selva A.M.
title Application of markov model to estimate individual condition parameters for transformers
title_short Application of markov model to estimate individual condition parameters for transformers
title_full Application of markov model to estimate individual condition parameters for transformers
title_fullStr Application of markov model to estimate individual condition parameters for transformers
title_full_unstemmed Application of markov model to estimate individual condition parameters for transformers
title_sort application of markov model to estimate individual condition parameters for transformers
publisher MDPI AG
publishDate 2023
_version_ 1806426357946646528
score 13.223943