Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs
We demonstrated a multiwavelength performance based on bidirectional Lyot filter at different temperature of polarization maintaining fiber (PMF) and semiconductor optical amplifiers (SOAs). The multiwavelength fiber laser (MWFL) based on bidirectional Lyot filter is not investigated thoroughly on i...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Penerbit UTHM
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-24132 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-241322023-05-29T14:55:54Z Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs Sulaiman A.H. Abdullah F. Ismail A. Jamaludin M.Z. Yusoff N.M. Mahdi M.A. 36810678100 56613644500 36023817800 57216839721 56036869700 7005348074 We demonstrated a multiwavelength performance based on bidirectional Lyot filter at different temperature of polarization maintaining fiber (PMF) and semiconductor optical amplifiers (SOAs). The multiwavelength fiber laser (MWFL) based on bidirectional Lyot filter is not investigated thoroughly on its channel spacing tunability due to birefringence change. A channel spacing of this MWFL is tunable due to birefringence change of the PMF. The birefringence value of is changed by heating the PMF, that leads to narrower channel spacing. From the experimental data, the temperature coefficient based on PMF length of 53.2 m and 10.6 m is 0.49 � 10-3 nm/�C and 1.35 � 10-3 nm/�C, respectively, thus shorter PMF is more sensitive to temperature. We also investigated the multiwavelength performance at different SOAs. When the SOA from Qphotonics is changed to the SOA from Alphion, the extinction ratio is reduced from 15 dB to 8 dB. In terms of flatness value, the Qhotonics's SOA has a flatter multiwavelength spectrum with only 1 dB of peak power difference from 1538 nm until 1541 nm as compared to 2.5 dB when using Alphion's SOA. � Universiti Tun Hussein Onn Malaysia Publisher's Office. Final 2023-05-29T06:55:54Z 2023-05-29T06:55:54Z 2018 Article 10.30880/ijie.2018.10.07.022 2-s2.0-85058930110 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058930110&doi=10.30880%2fijie.2018.10.07.022&partnerID=40&md5=743d5b3803678ace9684c737367a904b https://irepository.uniten.edu.my/handle/123456789/24132 10 7 244 252 All Open Access, Green Penerbit UTHM Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
We demonstrated a multiwavelength performance based on bidirectional Lyot filter at different temperature of polarization maintaining fiber (PMF) and semiconductor optical amplifiers (SOAs). The multiwavelength fiber laser (MWFL) based on bidirectional Lyot filter is not investigated thoroughly on its channel spacing tunability due to birefringence change. A channel spacing of this MWFL is tunable due to birefringence change of the PMF. The birefringence value of is changed by heating the PMF, that leads to narrower channel spacing. From the experimental data, the temperature coefficient based on PMF length of 53.2 m and 10.6 m is 0.49 � 10-3 nm/�C and 1.35 � 10-3 nm/�C, respectively, thus shorter PMF is more sensitive to temperature. We also investigated the multiwavelength performance at different SOAs. When the SOA from Qphotonics is changed to the SOA from Alphion, the extinction ratio is reduced from 15 dB to 8 dB. In terms of flatness value, the Qhotonics's SOA has a flatter multiwavelength spectrum with only 1 dB of peak power difference from 1538 nm until 1541 nm as compared to 2.5 dB when using Alphion's SOA. � Universiti Tun Hussein Onn Malaysia Publisher's Office. |
author2 |
36810678100 |
author_facet |
36810678100 Sulaiman A.H. Abdullah F. Ismail A. Jamaludin M.Z. Yusoff N.M. Mahdi M.A. |
format |
Article |
author |
Sulaiman A.H. Abdullah F. Ismail A. Jamaludin M.Z. Yusoff N.M. Mahdi M.A. |
spellingShingle |
Sulaiman A.H. Abdullah F. Ismail A. Jamaludin M.Z. Yusoff N.M. Mahdi M.A. Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs |
author_sort |
Sulaiman A.H. |
title |
Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs |
title_short |
Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs |
title_full |
Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs |
title_fullStr |
Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs |
title_full_unstemmed |
Investigation of multiwavelength laser performance based on temperature variation of PMF and different SOAs |
title_sort |
investigation of multiwavelength laser performance based on temperature variation of pmf and different soas |
publisher |
Penerbit UTHM |
publishDate |
2023 |
_version_ |
1806427448020041728 |
score |
13.223943 |