A genetic algorithm based fuzzy inference system for pattern classification and rule extraction

Setting fuzzy rules is one of the paramount techniques in the design of a fuzzy system. For a simple system, fuzzy if-then rules are usually derived from the human experts. However, in the event of having multiple variables coupled with a few features, the classification problem will be getting more...

Full description

Saved in:
Bibliographic Details
Main Authors: Wong S.Y., Yap K.S., Li X.
Other Authors: 55812054100
Format: Article
Published: Science Publishing Corporation Inc 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Setting fuzzy rules is one of the paramount techniques in the design of a fuzzy system. For a simple system, fuzzy if-then rules are usually derived from the human experts. However, in the event of having multiple variables coupled with a few features, the classification problem will be getting more sophisticated, as a result human expert may not be able to derive proper rules. This paper presents a genetic-algorithm-based fuzzy inference system for extracting highly comprehensible fuzzy rules to be implemented in human practices without detailed computation (hereafter denoted as GA-FIS). The impetus for developing a new and efficient GA-FIS model arises from the need of constructing fuzzy rules directly from raw data sets that combines good approximation and classification properties with compactness and transparency. Therefore, our proposed GA-FIS method will first define the membership functions with logical interpretation which is amendable by domain experts to human understanding, and then genetic algorithm serves as an optimization tool to construct the best combination of rules in fuzzy inference system that can achieve higher classification accuracy and gain better interpretability. The proposed approach is applied to various benchmark and real world problems and the results show its validity. � 2018 Authors.