Increasing T-method accuracy through application of robust M-estimatior

Mahalanobis Taguchi System is an analytical tool involving classification, clustering as well as prediction techniques. T-Method which is part of it is a multivariate analysis technique designed mainly for prediction and optimization purposes. The good things about T-Method is that prediction is alw...

Full description

Saved in:
Bibliographic Details
Main Authors: Harudin N., Jamaludin K.R., Nabil Muhtazaruddin M., Ramlie F., Ismail S.H., Muhamad W.Z.A.W., Jaafar N.N.
Other Authors: 56319654100
Format: Article
Published: Science Publishing Corporation Inc 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-23944
record_format dspace
spelling my.uniten.dspace-239442023-05-29T14:53:21Z Increasing T-method accuracy through application of robust M-estimatior Harudin N. Jamaludin K.R. Nabil Muhtazaruddin M. Ramlie F. Ismail S.H. Muhamad W.Z.A.W. Jaafar N.N. 56319654100 26434395500 55578437800 55982859700 57217685255 55860800560 57202612028 Mahalanobis Taguchi System is an analytical tool involving classification, clustering as well as prediction techniques. T-Method which is part of it is a multivariate analysis technique designed mainly for prediction and optimization purposes. The good things about T-Method is that prediction is always possible even with limited sample size. In applying T-Method, the analyst is advised to clearly understand the trend and states of the data population since this method is good in dealing with limited sample size data but for higher samples or extremely high samples data it might have more things to ponder. T-Method is not being mentioned robust to the effect of outliers within it, so dealing with high sample data will put the prediction accuracy at risk. By incorporating outliers in overall data analysis, it may contribute to a non-normality state beside the entire classical methods breakdown. Considering the risk towards lower prediction accuracy, it is important to consider the risk of lower accuracy for the individual estimates so that the overall prediction accuracy will be increased. Dealing with that intention, there exist several robust parameters estimates such as M-estimator, that able to give good results even with the data contain or may not contain outliers in it. Generalized inverse regression estimator (GIR) also been used in this research as well as Ordinary Lease Square Method (OLS) as part of comparison study. Embedding these methods into T-Method individual estimates conditionally helps in enhancing the accuracy of the T-Method while analyzing the robustness of T-method itself. However, from the 3 main case studies been used within this analysis, it shows that T-Method contributed to a better and acceptable performance with error percentages range 2.5% ~ 22.8% between all cases compared to other methods. M-estimator is proved to be sensitive with data consist of leverage point in x-axis as well as data with limited sample size. Referring to these 3 case studies only, it can be concluded that robust M-estimator is not feasible to be applied into T-Method as of now. Further enhance analysis is needed to encounter issues such as Airfoil noise case study data which T -method contributed to highest error% prediction. Hence further analysis need to be done for better result review. � 2018 Authors. Final 2023-05-29T06:53:21Z 2023-05-29T06:53:21Z 2018 Article 10.14419/ijet.v7i3.25.17468 2-s2.0-85082375070 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082375070&doi=10.14419%2fijet.v7i3.25.17468&partnerID=40&md5=56107ecf075af83eda33930db7e51187 https://irepository.uniten.edu.my/handle/123456789/23944 7 3 44 48 All Open Access, Bronze Science Publishing Corporation Inc Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Mahalanobis Taguchi System is an analytical tool involving classification, clustering as well as prediction techniques. T-Method which is part of it is a multivariate analysis technique designed mainly for prediction and optimization purposes. The good things about T-Method is that prediction is always possible even with limited sample size. In applying T-Method, the analyst is advised to clearly understand the trend and states of the data population since this method is good in dealing with limited sample size data but for higher samples or extremely high samples data it might have more things to ponder. T-Method is not being mentioned robust to the effect of outliers within it, so dealing with high sample data will put the prediction accuracy at risk. By incorporating outliers in overall data analysis, it may contribute to a non-normality state beside the entire classical methods breakdown. Considering the risk towards lower prediction accuracy, it is important to consider the risk of lower accuracy for the individual estimates so that the overall prediction accuracy will be increased. Dealing with that intention, there exist several robust parameters estimates such as M-estimator, that able to give good results even with the data contain or may not contain outliers in it. Generalized inverse regression estimator (GIR) also been used in this research as well as Ordinary Lease Square Method (OLS) as part of comparison study. Embedding these methods into T-Method individual estimates conditionally helps in enhancing the accuracy of the T-Method while analyzing the robustness of T-method itself. However, from the 3 main case studies been used within this analysis, it shows that T-Method contributed to a better and acceptable performance with error percentages range 2.5% ~ 22.8% between all cases compared to other methods. M-estimator is proved to be sensitive with data consist of leverage point in x-axis as well as data with limited sample size. Referring to these 3 case studies only, it can be concluded that robust M-estimator is not feasible to be applied into T-Method as of now. Further enhance analysis is needed to encounter issues such as Airfoil noise case study data which T -method contributed to highest error% prediction. Hence further analysis need to be done for better result review. � 2018 Authors.
author2 56319654100
author_facet 56319654100
Harudin N.
Jamaludin K.R.
Nabil Muhtazaruddin M.
Ramlie F.
Ismail S.H.
Muhamad W.Z.A.W.
Jaafar N.N.
format Article
author Harudin N.
Jamaludin K.R.
Nabil Muhtazaruddin M.
Ramlie F.
Ismail S.H.
Muhamad W.Z.A.W.
Jaafar N.N.
spellingShingle Harudin N.
Jamaludin K.R.
Nabil Muhtazaruddin M.
Ramlie F.
Ismail S.H.
Muhamad W.Z.A.W.
Jaafar N.N.
Increasing T-method accuracy through application of robust M-estimatior
author_sort Harudin N.
title Increasing T-method accuracy through application of robust M-estimatior
title_short Increasing T-method accuracy through application of robust M-estimatior
title_full Increasing T-method accuracy through application of robust M-estimatior
title_fullStr Increasing T-method accuracy through application of robust M-estimatior
title_full_unstemmed Increasing T-method accuracy through application of robust M-estimatior
title_sort increasing t-method accuracy through application of robust m-estimatior
publisher Science Publishing Corporation Inc
publishDate 2023
_version_ 1806425729096744960
score 13.214268