Neural network based prediction of stable equivalent series resistance in voltage regulator characterization
High demand on voltage regulator (VR) currently requires VR manufacturers to improve their time-to-market, particularly for new product development. To fulfill the output stability requirement, VR manufacturers characterize the VR in terms of the equivalent series resistance (ESR) of the output capa...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Institute of Advanced Engineering and Science
2023
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-23881 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-238812023-05-29T14:52:44Z Neural network based prediction of stable equivalent series resistance in voltage regulator characterization Zaman M.H.M. Mustafa M.M. Hannan M.A. Hussain A. 42262357500 7102076189 7103014445 57208481391 High demand on voltage regulator (VR) currently requires VR manufacturers to improve their time-to-market, particularly for new product development. To fulfill the output stability requirement, VR manufacturers characterize the VR in terms of the equivalent series resistance (ESR) of the output capacitor because the ESR variation affects the VR output stability. The VR characterization outcome suggests a stable range of ESR, which is indicated in the ESR tunnel graph in the VR datasheet. However, current practice in industry manually characterizes VR, thereby increasing the manufacturing time and cost. Therefore, an efficient method based on multilayer neural network has been developed to obtain the ESR tunnel graph. The results show that this method able to reduce the VR characterization time by approximately 53% and achieved critical ESR prediction error less than 5%. This work demonstrated an efficient and effective approach for VR characterization in terms of ESR. � 2018 Institute of Advanced Engineering and Science. All rights reserved. Final 2023-05-29T06:52:44Z 2023-05-29T06:52:44Z 2018 Article 10.11591/eei.v7i1.857 2-s2.0-85045645286 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045645286&doi=10.11591%2feei.v7i1.857&partnerID=40&md5=6d89acb76c7ebf48ff9b4eae771a8f38 https://irepository.uniten.edu.my/handle/123456789/23881 7 1 134 142 All Open Access, Green Institute of Advanced Engineering and Science Scopus |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
description |
High demand on voltage regulator (VR) currently requires VR manufacturers to improve their time-to-market, particularly for new product development. To fulfill the output stability requirement, VR manufacturers characterize the VR in terms of the equivalent series resistance (ESR) of the output capacitor because the ESR variation affects the VR output stability. The VR characterization outcome suggests a stable range of ESR, which is indicated in the ESR tunnel graph in the VR datasheet. However, current practice in industry manually characterizes VR, thereby increasing the manufacturing time and cost. Therefore, an efficient method based on multilayer neural network has been developed to obtain the ESR tunnel graph. The results show that this method able to reduce the VR characterization time by approximately 53% and achieved critical ESR prediction error less than 5%. This work demonstrated an efficient and effective approach for VR characterization in terms of ESR. � 2018 Institute of Advanced Engineering and Science. All rights reserved. |
author2 |
42262357500 |
author_facet |
42262357500 Zaman M.H.M. Mustafa M.M. Hannan M.A. Hussain A. |
format |
Article |
author |
Zaman M.H.M. Mustafa M.M. Hannan M.A. Hussain A. |
spellingShingle |
Zaman M.H.M. Mustafa M.M. Hannan M.A. Hussain A. Neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
author_sort |
Zaman M.H.M. |
title |
Neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
title_short |
Neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
title_full |
Neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
title_fullStr |
Neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
title_full_unstemmed |
Neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
title_sort |
neural network based prediction of stable equivalent series resistance in voltage regulator characterization |
publisher |
Institute of Advanced Engineering and Science |
publishDate |
2023 |
_version_ |
1806427392698220544 |
score |
13.214268 |