Parameter extraction of photovoltaic module using hybrid evolutionary algorithm

Algorithms; Diodes; Extraction; Iterative methods; Optimization; Parameter estimation; Parameter extraction; Photovoltaic cells; Different evolutions; Differential Evolution; Diode modeling; Electromagnetism-like algorithm; Extracting parameter; Hybrid evolutionary algorithm; Photovoltaic model; Pho...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhsen D.H., Ghazali A.B., Khatib T.
Other Authors: 56728928200
Format: Conference Paper
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-22445
record_format dspace
spelling my.uniten.dspace-224452023-05-29T14:01:01Z Parameter extraction of photovoltaic module using hybrid evolutionary algorithm Muhsen D.H. Ghazali A.B. Khatib T. 56728928200 56727852400 31767521400 Algorithms; Diodes; Extraction; Iterative methods; Optimization; Parameter estimation; Parameter extraction; Photovoltaic cells; Different evolutions; Differential Evolution; Diode modeling; Electromagnetism-like algorithm; Extracting parameter; Hybrid evolutionary algorithm; Photovoltaic model; Photovoltaic modules; Evolutionary algorithms This paper proposes a new method for extracting parameters of double diode model of photovoltaic module, based on differential evolution with adaptive mutation per iteration (DEAM) algorithm. The proposed method combined the mutation mechanism of electromagnetism-like algorithm with conventional version of different evolution (DE) algorithm to enhance the performance of DE. Furthermore, a new formula to adjust the mutation scaling factor and crossover rate for each generation is proposed. The performance of DEAM has been evaluated using experimental data and other previous methods in literature. According to the results, the proposed method offers better performance than other methods in terms of accuracy and convergence. Furthermore, the feasibility of proposed methods is validated by comparing the obtained results with other previous methods using various statistical errors. � 2015 IEEE. Final 2023-05-29T06:01:01Z 2023-05-29T06:01:01Z 2015 Conference Paper 10.1109/SCORED.2015.7449393 2-s2.0-84966472213 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84966472213&doi=10.1109%2fSCORED.2015.7449393&partnerID=40&md5=6ba3ae98cea24b6f55a66c42659749e8 https://irepository.uniten.edu.my/handle/123456789/22445 7449393 533 538 Institute of Electrical and Electronics Engineers Inc. Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Algorithms; Diodes; Extraction; Iterative methods; Optimization; Parameter estimation; Parameter extraction; Photovoltaic cells; Different evolutions; Differential Evolution; Diode modeling; Electromagnetism-like algorithm; Extracting parameter; Hybrid evolutionary algorithm; Photovoltaic model; Photovoltaic modules; Evolutionary algorithms
author2 56728928200
author_facet 56728928200
Muhsen D.H.
Ghazali A.B.
Khatib T.
format Conference Paper
author Muhsen D.H.
Ghazali A.B.
Khatib T.
spellingShingle Muhsen D.H.
Ghazali A.B.
Khatib T.
Parameter extraction of photovoltaic module using hybrid evolutionary algorithm
author_sort Muhsen D.H.
title Parameter extraction of photovoltaic module using hybrid evolutionary algorithm
title_short Parameter extraction of photovoltaic module using hybrid evolutionary algorithm
title_full Parameter extraction of photovoltaic module using hybrid evolutionary algorithm
title_fullStr Parameter extraction of photovoltaic module using hybrid evolutionary algorithm
title_full_unstemmed Parameter extraction of photovoltaic module using hybrid evolutionary algorithm
title_sort parameter extraction of photovoltaic module using hybrid evolutionary algorithm
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2023
_version_ 1806426485229092864
score 13.222552