Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm

Algorithms; Diodes; Errors; Extraction; Iterative methods; Mean square error; Optimization; Parameter estimation; Parameter extraction; Photovoltaic cells; Differential evolution algorithms; Diode modeling; Electromagnetism-like algorithm; Fast convergence speed; Hybrid evolutionary algorithm; IV ch...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhsen D.H., Ghazali A.B., Khatib T., Abed I.A.
Other Authors: 56728928200
Format: Article
Published: Elsevier Ltd 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-22289
record_format dspace
spelling my.uniten.dspace-222892023-05-29T14:00:02Z Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm Muhsen D.H. Ghazali A.B. Khatib T. Abed I.A. 56728928200 56727852400 31767521400 55568292900 Algorithms; Diodes; Errors; Extraction; Iterative methods; Mean square error; Optimization; Parameter estimation; Parameter extraction; Photovoltaic cells; Differential evolution algorithms; Diode modeling; Electromagnetism-like algorithm; Fast convergence speed; Hybrid evolutionary algorithm; IV characteristics; Photovoltaic model; Root mean square errors; Evolutionary algorithms Accurate modeling of photovoltaic (PV) modules is helpful in designing and assessing the energy production of PV systems. A new version of the differential evolution (DE) algorithm, called differential evolution with integrated mutation per iteration (DEIM), is proposed in this study to extract the seven parameters of a double-diode PV module model. This algorithm applies the attraction-repulsion concept of an electromagnetism-like algorithm to boost the mutation operation of the conventional DE algorithm. Moreover, a new adaptive strategy is proposed to tune mutation scaling and crossover rate for each generation. The proposed model is validated through experimental data and other models, which have been proposed in literature using various statistical errors. Results show that DEIM exhibits high accuracy and fast convergence speed compared with other methods. The average root mean square error, mean bias error, and absolute error at maximum power point of the proposed model are 1.713%, 0.149%, and 4.515%, respectively. � 2015 Elsevier Ltd. All rights reserved. Final 2023-05-29T06:00:01Z 2023-05-29T06:00:01Z 2015 Article 10.1016/j.enconman.2015.08.023 2-s2.0-84939782602 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84939782602&doi=10.1016%2fj.enconman.2015.08.023&partnerID=40&md5=75392c2df20fd6e8b46d34fb25edbe73 https://irepository.uniten.edu.my/handle/123456789/22289 105 552 561 Elsevier Ltd Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Algorithms; Diodes; Errors; Extraction; Iterative methods; Mean square error; Optimization; Parameter estimation; Parameter extraction; Photovoltaic cells; Differential evolution algorithms; Diode modeling; Electromagnetism-like algorithm; Fast convergence speed; Hybrid evolutionary algorithm; IV characteristics; Photovoltaic model; Root mean square errors; Evolutionary algorithms
author2 56728928200
author_facet 56728928200
Muhsen D.H.
Ghazali A.B.
Khatib T.
Abed I.A.
format Article
author Muhsen D.H.
Ghazali A.B.
Khatib T.
Abed I.A.
spellingShingle Muhsen D.H.
Ghazali A.B.
Khatib T.
Abed I.A.
Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
author_sort Muhsen D.H.
title Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
title_short Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
title_full Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
title_fullStr Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
title_full_unstemmed Parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
title_sort parameters extraction of double diode photovoltaic module's model based on hybrid evolutionary algorithm
publisher Elsevier Ltd
publishDate 2023
_version_ 1806425825931689984
score 13.214268