Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm

Beamforming; Learning algorithms; Signal to noise ratio; Adaptive Beamforming; Adaptive beamforming techniques; Gravitational search algorithm (GSA); Gravitational search algorithms; Interfering sources; Minimum variance distortionless response; Optimization problems; Signal-to-interference and nois...

Full description

Saved in:
Bibliographic Details
Main Authors: Darzi S., Tiong S.K., Islam M.T., Ismail M., Kibria S.
Other Authors: 55651612500
Format: Conference Paper
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-22264
record_format dspace
spelling my.uniten.dspace-222642023-05-29T13:59:55Z Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm Darzi S. Tiong S.K. Islam M.T. Ismail M. Kibria S. 55651612500 15128307800 55328836300 7401908770 55637259500 Beamforming; Learning algorithms; Signal to noise ratio; Adaptive Beamforming; Adaptive beamforming techniques; Gravitational search algorithm (GSA); Gravitational search algorithms; Interfering sources; Minimum variance distortionless response; Optimization problems; Signal-to-interference and noise ratios; Particle swarm optimization (PSO) Minimum Variance Distortionless Response (MVDR) adaptive beamforming technique commonly applies to cancel interfering sources and steer a strong beam towards the desired signal through its computed weight vectors. However, this method may have unsatisfactorily low nulling in various interference scenarios. Hence, adaptive beam pattern of MVDR can be considered as an optimization problem. The aim of this paper is to propose Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) to assist MVDR in improving its performance and overcoming both interferences and multipath fading. The simulation results show that the proposed GSA-MVDR algorithm offers higher Signal to Interference and Noise Ratio (SINR) than PSO-MVDR and conventional MVDR in different scenario of interferences and array elements. It is an effective solution for decreasing the effect of interference and increasing the desired signal simultaneously. � 2014 IEEE. Final 2023-05-29T05:59:55Z 2023-05-29T05:59:55Z 2015 Conference Paper 10.1109/ISTT.2014.7238210 2-s2.0-84946594421 https://www.scopus.com/inward/record.uri?eid=2-s2.0-84946594421&doi=10.1109%2fISTT.2014.7238210&partnerID=40&md5=1e08fb747ef083c46bc77d9958018495 https://irepository.uniten.edu.my/handle/123456789/22264 7238210 230 235 Institute of Electrical and Electronics Engineers Inc. Scopus
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
description Beamforming; Learning algorithms; Signal to noise ratio; Adaptive Beamforming; Adaptive beamforming techniques; Gravitational search algorithm (GSA); Gravitational search algorithms; Interfering sources; Minimum variance distortionless response; Optimization problems; Signal-to-interference and noise ratios; Particle swarm optimization (PSO)
author2 55651612500
author_facet 55651612500
Darzi S.
Tiong S.K.
Islam M.T.
Ismail M.
Kibria S.
format Conference Paper
author Darzi S.
Tiong S.K.
Islam M.T.
Ismail M.
Kibria S.
spellingShingle Darzi S.
Tiong S.K.
Islam M.T.
Ismail M.
Kibria S.
Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
author_sort Darzi S.
title Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
title_short Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
title_full Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
title_fullStr Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
title_full_unstemmed Optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
title_sort optimal null steering of minimum variance distortionless response adaptive beamforming using particle swarm optimization and gravitational search algorithm
publisher Institute of Electrical and Electronics Engineers Inc.
publishDate 2023
_version_ 1806428027928707072
score 13.214268