The effect of step height of microscale backward-facing step on mixed convection nanofluid flow and heat transfer characteristics

Simulation of laminar mixed convective flow over a 3-D horizontal microscale backward-Facing step (MBFS) is presented to explore the effect of step height on the flow and heat transfer characteristics. The momentum and energy equations were discretized by means of a finite volume method (FVM). The S...

Full description

Saved in:
Bibliographic Details
Main Authors: Kherbeet A.S., Mohammed H.A., Munisamy K.M., Salman B.H.
Other Authors: 55260597800
Format: Article
Published: 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Simulation of laminar mixed convective flow over a 3-D horizontal microscale backward-Facing step (MBFS) is presented to explore the effect of step height on the flow and heat transfer characteristics. The momentum and energy equations were discretized by means of a finite volume method (FVM). The SIMPLE algorithm scheme was used to link the pressure and velocity fields in the entire domain. Three values of step height were considered S = 350 ?m, S = 450 ?m and S = 550 ?m. EG-SiO2 nanofluid was considered as the working fluid with 25 nm nanoparticle diameter, 0.04 volume fraction. The results revealed that the Nusselt number and skin friction coefficient increase with the increase of the step height. The Reynolds number and pressure drop were found to decrease with the increase of the step height. © 2013 Elsevier Ltd. All rights reserved.