Investigation of syngas combustion at variable methane composition in can combustor using CFD

This paper describes the analysis of the fundamental effect of synthetic gas combustion in a can-type combustor using Computational Fluid Dynamic(CFD). Emphasis is given towards the effect of variation of methane to the flame profile, temperature distribution and heat flux in the combustor. In this...

Full description

Saved in:
Bibliographic Details
Main Authors: Zian N.M., Hasini H., Om N.I.
Other Authors: 56352636600
Format: Conference Paper
Published: Trans Tech Publications Ltd 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the analysis of the fundamental effect of synthetic gas combustion in a can-type combustor using Computational Fluid Dynamic(CFD). Emphasis is given towards the effect of variation of methane to the flame profile, temperature distribution and heat flux in the combustor. In this study, the composition of hydrogen in the syngas was fixed at 30% while methane and carbon monoxide were varied. Results show that the flame temperature and NOx emissions are highly dependent on the composition of methane in the syngas fuel. Nevertheless, the overall NOx emission for all cases is relatively lower than the conventional pure natural gas combustion. © (2014) Trans Tech Publications, Switzerland.