Combustion characteristics of improved biodiesel in diffusion burner

Biodiesel is considered as an alternative fuel for gas turbine application; however, the properties of biodiesel need further improvement in order to meet the combustion dynamics of a typical gas turbine. Therefore, this work has addressed an alternative and inexpensive method of performing combusti...

Full description

Saved in:
Bibliographic Details
Main Authors: Kumaran P., Gopinathan M., Kantharrajan S.
Other Authors: 56803626200
Format: Article
Published: Universiti Malaysia Pahang 2023
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Biodiesel is considered as an alternative fuel for gas turbine application; however, the properties of biodiesel need further improvement in order to meet the combustion dynamics of a typical gas turbine. Therefore, this work has addressed an alternative and inexpensive method of performing combustion studies of such improved biodiesel. A diffusion burner which has similar combustion dynamics to a gas turbine combustor has been used to evaluate the combustion characteristics of improved biodiesel or Second Generation Biodiesel (SGB). The combustion characteristics of the improved biodiesel have been evaluated in terms of fuel burning rate, flame length and emissions. Subsequently, the results were compared with unimproved biodiesel or First Generation Biodiesel (FGB) and distillate diesel (DD). The results indicated improvement in physical properties; SGB and its blends possess better combustion characteristics in terms of flame length, mass of fuel flow rate and emissions compared to FGB and DD. Improvements in physical properties such as viscosity and density cause SGB fuel to possess better capillary flow than FGB. Additionally, lower carbon monoxide (CO) emissions indicate that SGB has more complete combustion than FGB. On other hand, SGB with higher saturation compounds has produced higher thermal energy with lower nitrogen oxides (NOx) compared to FGB. Thus, SGB can be considered as an alternative fuel for use in gas turbines and a 50% blend of SGB with DD has shown promising results compared to other blend ratios. © Universiti Malaysia Pahang.