Synthesisand characterization..

Growing demand in the usage of electronic products has technologically essential properties such as rapid charge/discharge cycles have allure research attention. This research is basically to observe the effect of reduced graphene oxide (rGO) is mixed with polypyrrole (PPy) and manganese (IV) oxi...

Full description

Saved in:
Bibliographic Details
Main Author: Rajdev singh sandhu
Format:
Published: 2023
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-20654
record_format dspace
spelling my.uniten.dspace-206542023-05-05T07:49:53Z Synthesisand characterization.. Rajdev singh sandhu Polypyrrole Graphene Supercapacitor Growing demand in the usage of electronic products has technologically essential properties such as rapid charge/discharge cycles have allure research attention. This research is basically to observe the effect of reduced graphene oxide (rGO) is mixed with polypyrrole (PPy) and manganese (IV) oxide (MnO2) in a different ratio. These composites were prepared in the laboratory, and in the synthesis of polypyrrole, iron (III) chloride (FeCl3) was used as oxidizing agent where this synthesized polymer was used in the electrode material composites for supercapacitor application. Besides that, several of the weight percentages of the reduced graphene oxide (rGO) were added to the PPy/MnO2 composite so that it can generate a nanocomposite which is suitable for supercapacitor. There were three types of electrode samples that have prepared. Electrode for sample 1 was based on PPy/MnO2 composite. For sample 2 and sample 3, the electrode was prepared based on 5% wt rGO/PPy/MnO2 and 10% wt rGO/PPy/MnO2 nanocomposites. Moreover, the same electrolyte which is H PO /PVA was used for all samples. Furthermore, these prepared nanocomposites were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). Besides, these characterizations confirmed that the formation of homogeneous composites is having rGO which has mixed into PPy/MnO2 nanocomposites very well. Besides, the cyclic voltammetry and galvanostatic charge-discharge revealed good results with an excellent redox characteristic from these nanocomposites with having a marvelous specific capacitance of 190 F g-1. By this, the specific capacitance is highly influenced by the reduced graphene oxide (rGO) amount. After that, the symmetric device of rGO/PPy/MnO2|H3PO4| rGO/PPy/MnO2 was assembled where its energy 2023-05-03T15:11:09Z 2023-05-03T15:11:09Z 2019-10 https://irepository.uniten.edu.my/handle/123456789/20654 application/pdf
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
topic Polypyrrole
Graphene
Supercapacitor
spellingShingle Polypyrrole
Graphene
Supercapacitor
Rajdev singh sandhu
Synthesisand characterization..
description Growing demand in the usage of electronic products has technologically essential properties such as rapid charge/discharge cycles have allure research attention. This research is basically to observe the effect of reduced graphene oxide (rGO) is mixed with polypyrrole (PPy) and manganese (IV) oxide (MnO2) in a different ratio. These composites were prepared in the laboratory, and in the synthesis of polypyrrole, iron (III) chloride (FeCl3) was used as oxidizing agent where this synthesized polymer was used in the electrode material composites for supercapacitor application. Besides that, several of the weight percentages of the reduced graphene oxide (rGO) were added to the PPy/MnO2 composite so that it can generate a nanocomposite which is suitable for supercapacitor. There were three types of electrode samples that have prepared. Electrode for sample 1 was based on PPy/MnO2 composite. For sample 2 and sample 3, the electrode was prepared based on 5% wt rGO/PPy/MnO2 and 10% wt rGO/PPy/MnO2 nanocomposites. Moreover, the same electrolyte which is H PO /PVA was used for all samples. Furthermore, these prepared nanocomposites were characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD). Besides, these characterizations confirmed that the formation of homogeneous composites is having rGO which has mixed into PPy/MnO2 nanocomposites very well. Besides, the cyclic voltammetry and galvanostatic charge-discharge revealed good results with an excellent redox characteristic from these nanocomposites with having a marvelous specific capacitance of 190 F g-1. By this, the specific capacitance is highly influenced by the reduced graphene oxide (rGO) amount. After that, the symmetric device of rGO/PPy/MnO2|H3PO4| rGO/PPy/MnO2 was assembled where its energy
format
author Rajdev singh sandhu
author_facet Rajdev singh sandhu
author_sort Rajdev singh sandhu
title Synthesisand characterization..
title_short Synthesisand characterization..
title_full Synthesisand characterization..
title_fullStr Synthesisand characterization..
title_full_unstemmed Synthesisand characterization..
title_sort synthesisand characterization..
publishDate 2023
_version_ 1806427831507353600
score 13.223943