An ant colony optimized mppt for standalone hybrid pv-wind power system with single cuk converter

This research work explains the practical realization of hybrid solar wind-based standalone power system with maximum power point tracker (MPPT) to produce electrical power in rural places (residential applications). The wind inspired Ant Colony Optimization (ACO)-based MPPT algorithm is employed fo...

Full description

Saved in:
Bibliographic Details
Main Authors: Priyadarshi, N., Ramachandaramurthy, V.K., Padmanaban, S., Azam, F.
Format: Article
Language:English
Published: 2020
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research work explains the practical realization of hybrid solar wind-based standalone power system with maximum power point tracker (MPPT) to produce electrical power in rural places (residential applications). The wind inspired Ant Colony Optimization (ACO)-based MPPT algorithm is employed for the purpose of fast and accurate tracking power from wind energy system. Fuzzy Logic Control (FLC) inverter controlling strategy is adopted in this presented work compared to classical proportional-integral (PI) control. Moreover, single Cuk converter is operated as impedance power adapter to execute MPPT functioning. Here, ACO-based MPPT has been implemented with no voltage and current extra circuit requirement compared to existing evolutionary algorithms single cuk converter is employed to improve conversion efficiency of converter by maximizing power stages. DC-link voltage can be regulated by placing Cuk converter Permanent Magnet Synchronous Generator (PMSG) linked rectifier and inverter. The proposed MPPT method is responsible for rapid battery charging and gives power dispersion of battery for hybrid PV-Wind system. ACO-based MPPT provides seven times faster convergence compared to the particle swarm optimization (PSO) algorithm for achievement of maximum power point (MPP) and tracking efficiency. Satisfactory practical results have been realized using the dSPACE (DS1104) platform that justify the superiority of proposed algorithms designed under various operating situations. © 2019 by the authors.