An offshore equipment data forecasting system
In the oil and gas industry, various machineries and equipment are used to perform oil and gas extractions. The problem arises when there is unplanned maintenance on any equipment. Unplanned maintenance will result in unplanned deferments that disrupt business operations. Companies may have develope...
Saved in:
Main Authors: | , , |
---|---|
Format: | Book chapter |
Language: | English |
Published: |
2020
|
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.uniten.dspace-13192 |
---|---|
record_format |
dspace |
spelling |
my.uniten.dspace-131922020-03-17T05:21:29Z An offshore equipment data forecasting system Sahdom, A.S. Hoe, A.C.K. Dhillon, J.S. In the oil and gas industry, various machineries and equipment are used to perform oil and gas extractions. The problem arises when there is unplanned maintenance on any equipment. Unplanned maintenance will result in unplanned deferments that disrupt business operations. Companies may have developed monitoring systems based on current and historical equipment statuses, but ideally there should be mechanisms to conduct or produce real-time forecasts on equipment conditions. In this paper, linear regression models were tested and deployed in a system developed to forecast flow rate of seawater lift pumps of an offshore platform. Apart from identifying and evaluating a suitable statistical model to derive the forecasts, this paper presents a tool that was developed using the selected model to automate real-time data extraction and execute the prediction process. The models were developed based on raw data that were accumulated from an oil and gas company over a period of 3 months. Of the 3 months’ data, the first 2 months of data were used as the training data, and the last one month was used for testing the models. Data cleansing was performed on the dataset whereby unwanted values that could affect accuracy of the model or any other data with values not processable by the models were eliminated. Results indicated that Autoregressive (AR) model is suitable for a real-time prediction of an offshore equipment. © Springer Nature Singapore Pte Ltd. 2019. 2020-02-03T03:30:59Z 2020-02-03T03:30:59Z 2019 Book chapter 10.1007/978-981-13-6031-2_25 en |
institution |
Universiti Tenaga Nasional |
building |
UNITEN Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Tenaga Nasional |
content_source |
UNITEN Institutional Repository |
url_provider |
http://dspace.uniten.edu.my/ |
language |
English |
description |
In the oil and gas industry, various machineries and equipment are used to perform oil and gas extractions. The problem arises when there is unplanned maintenance on any equipment. Unplanned maintenance will result in unplanned deferments that disrupt business operations. Companies may have developed monitoring systems based on current and historical equipment statuses, but ideally there should be mechanisms to conduct or produce real-time forecasts on equipment conditions. In this paper, linear regression models were tested and deployed in a system developed to forecast flow rate of seawater lift pumps of an offshore platform. Apart from identifying and evaluating a suitable statistical model to derive the forecasts, this paper presents a tool that was developed using the selected model to automate real-time data extraction and execute the prediction process. The models were developed based on raw data that were accumulated from an oil and gas company over a period of 3 months. Of the 3 months’ data, the first 2 months of data were used as the training data, and the last one month was used for testing the models. Data cleansing was performed on the dataset whereby unwanted values that could affect accuracy of the model or any other data with values not processable by the models were eliminated. Results indicated that Autoregressive (AR) model is suitable for a real-time prediction of an offshore equipment. © Springer Nature Singapore Pte Ltd. 2019. |
format |
Book chapter |
author |
Sahdom, A.S. Hoe, A.C.K. Dhillon, J.S. |
spellingShingle |
Sahdom, A.S. Hoe, A.C.K. Dhillon, J.S. An offshore equipment data forecasting system |
author_facet |
Sahdom, A.S. Hoe, A.C.K. Dhillon, J.S. |
author_sort |
Sahdom, A.S. |
title |
An offshore equipment data forecasting system |
title_short |
An offshore equipment data forecasting system |
title_full |
An offshore equipment data forecasting system |
title_fullStr |
An offshore equipment data forecasting system |
title_full_unstemmed |
An offshore equipment data forecasting system |
title_sort |
offshore equipment data forecasting system |
publishDate |
2020 |
_version_ |
1662758827972362240 |
score |
13.222552 |