Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations

Core oil palm trunk (COPT) is a lignocellulosic waste that poses as an alternative carbon source in bio-chemical and bio-fuel production. The bulk of free sugar present in its sap renders COPT as a potential starting material in the synthesis of methyl levulinate (ML). In this study, the effect of d...

Full description

Saved in:
Bibliographic Details
Main Authors: Abu Jahar, N., Pua, F.-L., Chyi, W.J., Mostapha, M., Zakaria, S., Chia, C.H., Syed Jaafar, S.N.
Format: Article
Language:English
Published: 2020
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.uniten.dspace-13107
record_format dspace
spelling my.uniten.dspace-131072020-03-12T03:21:36Z Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations Abu Jahar, N. Pua, F.-L. Chyi, W.J. Mostapha, M. Zakaria, S. Chia, C.H. Syed Jaafar, S.N. Core oil palm trunk (COPT) is a lignocellulosic waste that poses as an alternative carbon source in bio-chemical and bio-fuel production. The bulk of free sugar present in its sap renders COPT as a potential starting material in the synthesis of methyl levulinate (ML). In this study, the effect of different sap extractions on COPT and synthesised methyl levulinate respectively was analysed. COPT sap was extracted using two different methods of blending and pressing, followed by the methanolysis reaction. The high performance liquid chromatography (HPLC) results for both extraction methods have revealed that glucose is the primary sugar found in the sap. However, the total sugar concentration obtained from the pressing extraction method was found to be higher at 22.14 g/L, compared to blending extraction method at 20.23 g/L. Meanwhile, synthesized methyl levulinate was identified from the methanolysis of COPT sap in all type of catalysts (i.e. 0.5 M HCl, 1 M HCl, 0.5 M H 2 SO 4 and 1 M H 2 SO 4 ). It is worth noting that the isolated and highest concentration of methyl levulinate was obtained when catalysed by 1 M H 2 SO 4 and can be clearly seen on the NMR spectrum. © 2017, Springer Science+Business Media B.V. 2020-02-03T03:30:26Z 2020-02-03T03:30:26Z 2019 Article 10.1007/s12649-017-0085-9 en
institution Universiti Tenaga Nasional
building UNITEN Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Tenaga Nasional
content_source UNITEN Institutional Repository
url_provider http://dspace.uniten.edu.my/
language English
description Core oil palm trunk (COPT) is a lignocellulosic waste that poses as an alternative carbon source in bio-chemical and bio-fuel production. The bulk of free sugar present in its sap renders COPT as a potential starting material in the synthesis of methyl levulinate (ML). In this study, the effect of different sap extractions on COPT and synthesised methyl levulinate respectively was analysed. COPT sap was extracted using two different methods of blending and pressing, followed by the methanolysis reaction. The high performance liquid chromatography (HPLC) results for both extraction methods have revealed that glucose is the primary sugar found in the sap. However, the total sugar concentration obtained from the pressing extraction method was found to be higher at 22.14 g/L, compared to blending extraction method at 20.23 g/L. Meanwhile, synthesized methyl levulinate was identified from the methanolysis of COPT sap in all type of catalysts (i.e. 0.5 M HCl, 1 M HCl, 0.5 M H 2 SO 4 and 1 M H 2 SO 4 ). It is worth noting that the isolated and highest concentration of methyl levulinate was obtained when catalysed by 1 M H 2 SO 4 and can be clearly seen on the NMR spectrum. © 2017, Springer Science+Business Media B.V.
format Article
author Abu Jahar, N.
Pua, F.-L.
Chyi, W.J.
Mostapha, M.
Zakaria, S.
Chia, C.H.
Syed Jaafar, S.N.
spellingShingle Abu Jahar, N.
Pua, F.-L.
Chyi, W.J.
Mostapha, M.
Zakaria, S.
Chia, C.H.
Syed Jaafar, S.N.
Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations
author_facet Abu Jahar, N.
Pua, F.-L.
Chyi, W.J.
Mostapha, M.
Zakaria, S.
Chia, C.H.
Syed Jaafar, S.N.
author_sort Abu Jahar, N.
title Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations
title_short Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations
title_full Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations
title_fullStr Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations
title_full_unstemmed Utilization of Core Oil Palm Trunk Waste to Methyl Levulinate: Physical and Chemical Characterizations
title_sort utilization of core oil palm trunk waste to methyl levulinate: physical and chemical characterizations
publishDate 2020
_version_ 1662758815815172096
score 13.1944895