Effect of Activated Carbon Compaction on Water Filtration Efficiency

Water contamination in rural Malaysian areas, mainly caused by logging activities leading to soil erosion and river pollution, presents a significant threat to water supplies. In response, a specialized activated carbon water filtering device was developed to target the absorption of organic molecu...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Elfy, Mersal, Kuok, King Kuok, Md. Rezaur, Rahman, Chiu, Po Chan, Muhammad Khusairy, Bakri, Md. Didarul Alam, Chowdhury, Md Abdul Majed, Patwary
Format: Article
Language:English
Published: NC State University 2024
Subjects:
Online Access:http://ir.unimas.my/id/eprint/45253/1/Effect%20of%20Activated%20Carbon%20-%20Copy.pdf
http://ir.unimas.my/id/eprint/45253/
https://bioresources.cnr.ncsu.edu/resources/effect-of-activated-carbon-compaction-on-water-filtration-efficiency/#:~:text=Activated%20carbon%20is%20also%20more,barrier%20against%20further%20contaminant%20intrusion.
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Water contamination in rural Malaysian areas, mainly caused by logging activities leading to soil erosion and river pollution, presents a significant threat to water supplies. In response, a specialized activated carbon water filtering device was developed to target the absorption of organic molecules. The impact of compaction of activated carbon on water filtering efficiency was evaluated. Testing both compacted and uncompacted activated carbon filters with contaminated river water, the study utilized the Malaysia Department of Environment's (DOE) water quality index (WQI) to assess filter effectiveness. The results revealed that water filtered through compacted activated carbon was clearer and less yellowish compared to the uncompacted counterpart. Moreover, the compacted filter showed higher dissolved oxygen levels, lower ammoniacal nitrogen levels, and a lower pH, resulting in a significantly higher WQI score of 80.4 compared to 78.8 for the uncompacted filter. Further analysis via an adsorption isotherm test demonstrated the superior ability of compacted activated carbon to absorb acetic acid, as evidenced by higher lines in the Freundlich isotherm model graphs. These findings emphasize the efficacy of compacted activated carbon in water filtration, advocating for its integration into filter construction to enhance water quality in rural regions.