Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects

Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel Tang, Kuok Ho, Serene Sow, Mun Lock, Yap, Pow-Seng, Cheah, Kin Wai, Chan, Yi Herng, Chung Loong, Yiin, Andrian Zi, En Ku, Adrian Chun, Minh Loy, Bridgid Lai, Fui Chin, Chai, Yee Ho
Format: Article
Language:English
Published: Elsevier 2022
Subjects:
Online Access:http://ir.unimas.my/id/eprint/38273/1/Microplastics1.pdf
http://ir.unimas.my/id/eprint/38273/
https://www.sciencedirect.com/science/article/pii/S0048969722019611
http://dx.doi.org/10.1016/j.scitotenv.2022.154868
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimas.ir.38273
record_format eprints
spelling my.unimas.ir.382732022-04-08T08:06:09Z http://ir.unimas.my/id/eprint/38273/ Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects Daniel Tang, Kuok Ho Serene Sow, Mun Lock Yap, Pow-Seng Cheah, Kin Wai Chan, Yi Herng Chung Loong, Yiin Andrian Zi, En Ku Adrian Chun, Minh Loy Bridgid Lai, Fui Chin Chai, Yee Ho TA Engineering (General). Civil engineering (General) TP Chemical technology Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application. Elsevier 2022-03-28 Article PeerReviewed text en http://ir.unimas.my/id/eprint/38273/1/Microplastics1.pdf Daniel Tang, Kuok Ho and Serene Sow, Mun Lock and Yap, Pow-Seng and Cheah, Kin Wai and Chan, Yi Herng and Chung Loong, Yiin and Andrian Zi, En Ku and Adrian Chun, Minh Loy and Bridgid Lai, Fui Chin and Chai, Yee Ho (2022) Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects. Science of The Total Environment, 832 (154868). pp. 1-21. ISSN 0048-9697 https://www.sciencedirect.com/science/article/pii/S0048969722019611 http://dx.doi.org/10.1016/j.scitotenv.2022.154868
institution Universiti Malaysia Sarawak
building Centre for Academic Information Services (CAIS)
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sarawak
content_source UNIMAS Institutional Repository
url_provider http://ir.unimas.my/
language English
topic TA Engineering (General). Civil engineering (General)
TP Chemical technology
spellingShingle TA Engineering (General). Civil engineering (General)
TP Chemical technology
Daniel Tang, Kuok Ho
Serene Sow, Mun Lock
Yap, Pow-Seng
Cheah, Kin Wai
Chan, Yi Herng
Chung Loong, Yiin
Andrian Zi, En Ku
Adrian Chun, Minh Loy
Bridgid Lai, Fui Chin
Chai, Yee Ho
Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects
description Environmental prevalence of microplastics has prompted the development of novel methods for their removal, one of which involves immobilization of microplastics-degrading enzymes. Various materials including nanomaterials have been studied for this purpose but there is currently a lack of review to present these studies in an organized manner to highlight the advances and feasibility. This article reviewed more than 100 peer-reviewed scholarly papers to elucidate the latest advances in the novel application of immobilized enzyme/microorganism complexes for microplastics degradation, its feasibility and future prospects. This review shows that metal nanoparticle-enzyme complexes improve biodegradation of microplastics in most studies through creating photogenerated radicals to facilitate polymer oxidation, accelerating growth of bacterial consortia for biodegradation, anchoring enzymes and improving their stability, and absorbing water for hydrolysis. In a study, the antimicrobial property of nanoparticles retarded the growth of microorganisms, hence biodegradation. Carbon particle-enzyme complexes enable enzymes to be immobilized on carbon-based support or matrix through covalent bonding, adsorption, entrapment, encapsulation, and a combination of the mechanisms, facilitated by formation of cross-links between enzymes. These complexes were shown to improve microplastics-degrading efficiency and recyclability of enzymes. Other emerging nanoparticles and/or enzymatic technologies are fusion of enzymes with hydrophobins, polymer binding module, peptide and novel nanoparticles. Nonetheless, the enzymes in the complexes present a limiting factor due to limited understanding of the degradation mechanisms. Besides, there is a lack of studies on the degradation of polypropylene and polyvinyl chloride. Genetic bioengineering and metagenomics could provide breakthrough in this area. This review highlights the optimism of using immobilized enzymes/microorganisms to increase the efficiency of microplastics degradation but optimization of enzymatic or microbial activities and synthesis of immobilized enzymes/microorganisms are crucial to overcome the barriers to their wide application.
format Article
author Daniel Tang, Kuok Ho
Serene Sow, Mun Lock
Yap, Pow-Seng
Cheah, Kin Wai
Chan, Yi Herng
Chung Loong, Yiin
Andrian Zi, En Ku
Adrian Chun, Minh Loy
Bridgid Lai, Fui Chin
Chai, Yee Ho
author_facet Daniel Tang, Kuok Ho
Serene Sow, Mun Lock
Yap, Pow-Seng
Cheah, Kin Wai
Chan, Yi Herng
Chung Loong, Yiin
Andrian Zi, En Ku
Adrian Chun, Minh Loy
Bridgid Lai, Fui Chin
Chai, Yee Ho
author_sort Daniel Tang, Kuok Ho
title Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects
title_short Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects
title_full Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects
title_fullStr Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects
title_full_unstemmed Immobilized enzyme/microorganism complexes for degradation of microplastics: A review of recent advances, feasibility and future prospects
title_sort immobilized enzyme/microorganism complexes for degradation of microplastics: a review of recent advances, feasibility and future prospects
publisher Elsevier
publishDate 2022
url http://ir.unimas.my/id/eprint/38273/1/Microplastics1.pdf
http://ir.unimas.my/id/eprint/38273/
https://www.sciencedirect.com/science/article/pii/S0048969722019611
http://dx.doi.org/10.1016/j.scitotenv.2022.154868
_version_ 1729708070591791104
score 13.160551