Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach

Biochar has emerged as a prominent adsorbent in reducing the bioavailability of organic pollutants in water bodies due to its properties such as large surface area, porous structure, enhanced surface functional groups, and inorganic components. However, these properties can be further enriched and i...

Full description

Saved in:
Bibliographic Details
Main Author: Nur Hanani, Hasana
Format: Thesis
Language:English
Published: Universiti Malaysia Sarawak (UNIMAS) 2021
Subjects:
Online Access:http://ir.unimas.my/id/eprint/35802/6/NUR%20HANANI%20HASANA%20pswd.pdf
http://ir.unimas.my/id/eprint/35802/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimas.ir.35802
record_format eprints
spelling my.unimas.ir.358022023-04-04T07:43:17Z http://ir.unimas.my/id/eprint/35802/ Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach Nur Hanani, Hasana QD Chemistry Biochar has emerged as a prominent adsorbent in reducing the bioavailability of organic pollutants in water bodies due to its properties such as large surface area, porous structure, enhanced surface functional groups, and inorganic components. However, these properties can be further enriched and improved to increase the removal efficiency of contaminants to develop biochar as a better adsorbent. Further enhancement of biochar properties can be accomplished via chemical modification. This study focuses on the development and characterization of chemically modified palm kernel shell (PKS) biochar using ethanol (EtOH), methanol (MeOH), and magnesium (Mg) for the removal of methylene blue (MB) from aqueous solution. Characterization of chemically modified biochar, such as ultimate analysis, proximate analysis, SEM analysis, BET analysis, and FTIR analysis, were also investigated. Based on the results, both SEM and BET analysis revealed a notable increase in the size and amount of pores on the surface of biochar and its surface area where Mg-treated PKS displayed the highest surface area of 674 m2g-1. Batch adsorption was conducted at different initial concentrations and contact times. Mg-treated PKS biochar was chosen for optimization study via the Response Surface Methodology (RSM) approach since it gave the highest removal efficiency in both batch experiments. RSM was conducted to study the effects of pH of the solution (pH 4-10), contact time (30-90 min), and adsorbent dosage (0.1-0.5 g). The optimal conditions for the adsorption of MB onto Mg-treated PKS biochar were found to be at a pH value of 10 with a contact time of 30 minutes and a dosage of 0.5 gram with a percentage removal of 98.50%. All chemically modified PKS biochar are proven to be successful in removing MB from an aqueous solution compared to untreated PKS biochar. Universiti Malaysia Sarawak (UNIMAS) 2021-08-12 Thesis NonPeerReviewed text en http://ir.unimas.my/id/eprint/35802/6/NUR%20HANANI%20HASANA%20pswd.pdf Nur Hanani, Hasana (2021) Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach. Masters thesis, Universiti Malaysia Sarawak.
institution Universiti Malaysia Sarawak
building Centre for Academic Information Services (CAIS)
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sarawak
content_source UNIMAS Institutional Repository
url_provider http://ir.unimas.my/
language English
topic QD Chemistry
spellingShingle QD Chemistry
Nur Hanani, Hasana
Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach
description Biochar has emerged as a prominent adsorbent in reducing the bioavailability of organic pollutants in water bodies due to its properties such as large surface area, porous structure, enhanced surface functional groups, and inorganic components. However, these properties can be further enriched and improved to increase the removal efficiency of contaminants to develop biochar as a better adsorbent. Further enhancement of biochar properties can be accomplished via chemical modification. This study focuses on the development and characterization of chemically modified palm kernel shell (PKS) biochar using ethanol (EtOH), methanol (MeOH), and magnesium (Mg) for the removal of methylene blue (MB) from aqueous solution. Characterization of chemically modified biochar, such as ultimate analysis, proximate analysis, SEM analysis, BET analysis, and FTIR analysis, were also investigated. Based on the results, both SEM and BET analysis revealed a notable increase in the size and amount of pores on the surface of biochar and its surface area where Mg-treated PKS displayed the highest surface area of 674 m2g-1. Batch adsorption was conducted at different initial concentrations and contact times. Mg-treated PKS biochar was chosen for optimization study via the Response Surface Methodology (RSM) approach since it gave the highest removal efficiency in both batch experiments. RSM was conducted to study the effects of pH of the solution (pH 4-10), contact time (30-90 min), and adsorbent dosage (0.1-0.5 g). The optimal conditions for the adsorption of MB onto Mg-treated PKS biochar were found to be at a pH value of 10 with a contact time of 30 minutes and a dosage of 0.5 gram with a percentage removal of 98.50%. All chemically modified PKS biochar are proven to be successful in removing MB from an aqueous solution compared to untreated PKS biochar.
format Thesis
author Nur Hanani, Hasana
author_facet Nur Hanani, Hasana
author_sort Nur Hanani, Hasana
title Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach
title_short Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach
title_full Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach
title_fullStr Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach
title_full_unstemmed Chemically Modified Palm Kernel Shell Biochar for Methylene Blue Removal A Response Surface Methodology Approach
title_sort chemically modified palm kernel shell biochar for methylene blue removal a response surface methodology approach
publisher Universiti Malaysia Sarawak (UNIMAS)
publishDate 2021
url http://ir.unimas.my/id/eprint/35802/6/NUR%20HANANI%20HASANA%20pswd.pdf
http://ir.unimas.my/id/eprint/35802/
_version_ 1762396691645857792
score 13.160551