A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network

In recent times, Heterogeneous Network (HetNet) achieves the capacity and coverage for indoors through the deployment of small cells i.e. femtocells (HeNodeBs). These HeNodeBs are plug-and-play Customer Premises Equipment’s which are associated with the internet protocol backhaul to macrocell (macro...

Full description

Saved in:
Bibliographic Details
Main Authors: Hasan,, M.L., Ismail,, A.F., Islam,, S., Hashim,, W., Ahmed,, M.M., Memon,, I.
Format: E-Article
Published: Springer New York LLC 2019
Subjects:
Online Access:http://ir.unimas.my/id/eprint/29637/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048095008&doi=10.1007%2fs11235-018-0473-x&partnerID=40&md5=fe24e6d5403810c1398e8918d7056e0e
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimas.ir.29637
record_format eprints
spelling my.unimas.ir.296372020-06-04T07:02:11Z http://ir.unimas.my/id/eprint/29637/ A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network Hasan,, M.L. Ismail,, A.F. Islam,, S. Hashim,, W. Ahmed,, M.M. Memon,, I. TA Engineering (General). Civil engineering (General) In recent times, Heterogeneous Network (HetNet) achieves the capacity and coverage for indoors through the deployment of small cells i.e. femtocells (HeNodeBs). These HeNodeBs are plug-and-play Customer Premises Equipment’s which are associated with the internet protocol backhaul to macrocell (macro-eNodeB). The random placement of HeNodeBs deployed in co-channel along with macro-eNodeB is causing severe system performance degradation. Thereby, these HeNodeBs are suggested as the ultimate and the most significant cause of interference in Orthogonal Frequency-Division Multiple-Access based HetNets due to the restricted co-channel deployment. The CTI in such systems can significantly reduce the throughput, and the outages can rise to the unacceptable limit or extremely high levels. These lead to severe system performance degradation in HetNets. This paper presents a novel HGBBDSA-CTI approach capable of strategically allocate the subcarriers and thereby improves the throughput as well as the outage. The enhanced system performance is able to mitigate CTI issues in HetNets. This paper also analyses the time complexity for the proposed HGBBDSA algorithm and also compares it with the Genetic Algorithm-based Dynamic Subcarrier Allocation (DSA), and Particle Swarm Optimization-based DSA as well. The key target of this study is to allocate the unoccupied subcarriers by sharing among the HeNodeBs. The reason is also to enhance the system performance such as throughput of HeNodeB, the average throughput of HeNodeB Users, and outage. The simulation results show that the proposed HGBBDSA-CTI approach enhances the average throughput (92.05 and 74.44%), throughput (30.50 and 74.34%), and the outage rate reduced to 52.9 and 50.76% compare with the existing approaches. The result also indicates that the proposed HGBBDSA approach has less time complexity than the existing approaches. Springer New York LLC 2019-02 E-Article PeerReviewed Hasan,, M.L. and Ismail,, A.F. and Islam,, S. and Hashim,, W. and Ahmed,, M.M. and Memon,, I. (2019) A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network. Telecommunication Systems, 70 (2). pp. 245-262. ISSN 1018-4864 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048095008&doi=10.1007%2fs11235-018-0473-x&partnerID=40&md5=fe24e6d5403810c1398e8918d7056e0e 10.1007/s11235-018-0473-x
institution Universiti Malaysia Sarawak
building Centre for Academic Information Services (CAIS)
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sarawak
content_source UNIMAS Institutional Repository
url_provider http://ir.unimas.my/
topic TA Engineering (General). Civil engineering (General)
spellingShingle TA Engineering (General). Civil engineering (General)
Hasan,, M.L.
Ismail,, A.F.
Islam,, S.
Hashim,, W.
Ahmed,, M.M.
Memon,, I.
A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network
description In recent times, Heterogeneous Network (HetNet) achieves the capacity and coverage for indoors through the deployment of small cells i.e. femtocells (HeNodeBs). These HeNodeBs are plug-and-play Customer Premises Equipment’s which are associated with the internet protocol backhaul to macrocell (macro-eNodeB). The random placement of HeNodeBs deployed in co-channel along with macro-eNodeB is causing severe system performance degradation. Thereby, these HeNodeBs are suggested as the ultimate and the most significant cause of interference in Orthogonal Frequency-Division Multiple-Access based HetNets due to the restricted co-channel deployment. The CTI in such systems can significantly reduce the throughput, and the outages can rise to the unacceptable limit or extremely high levels. These lead to severe system performance degradation in HetNets. This paper presents a novel HGBBDSA-CTI approach capable of strategically allocate the subcarriers and thereby improves the throughput as well as the outage. The enhanced system performance is able to mitigate CTI issues in HetNets. This paper also analyses the time complexity for the proposed HGBBDSA algorithm and also compares it with the Genetic Algorithm-based Dynamic Subcarrier Allocation (DSA), and Particle Swarm Optimization-based DSA as well. The key target of this study is to allocate the unoccupied subcarriers by sharing among the HeNodeBs. The reason is also to enhance the system performance such as throughput of HeNodeB, the average throughput of HeNodeB Users, and outage. The simulation results show that the proposed HGBBDSA-CTI approach enhances the average throughput (92.05 and 74.44%), throughput (30.50 and 74.34%), and the outage rate reduced to 52.9 and 50.76% compare with the existing approaches. The result also indicates that the proposed HGBBDSA approach has less time complexity than the existing approaches.
format E-Article
author Hasan,, M.L.
Ismail,, A.F.
Islam,, S.
Hashim,, W.
Ahmed,, M.M.
Memon,, I.
author_facet Hasan,, M.L.
Ismail,, A.F.
Islam,, S.
Hashim,, W.
Ahmed,, M.M.
Memon,, I.
author_sort Hasan,, M.L.
title A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network
title_short A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network
title_full A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network
title_fullStr A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network
title_full_unstemmed A Novel HGBBDSA-CTI Approach for Subcarrier Allocation in Heterogeneous Network
title_sort novel hgbbdsa-cti approach for subcarrier allocation in heterogeneous network
publisher Springer New York LLC
publishDate 2019
url http://ir.unimas.my/id/eprint/29637/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048095008&doi=10.1007%2fs11235-018-0473-x&partnerID=40&md5=fe24e6d5403810c1398e8918d7056e0e
_version_ 1669010443623989248
score 13.211869