Interactive Evolutionary Computation and Density- based Clustering for Data Analysis
Data clustering is useful in solving many pattern recognition and decision support tasks. This work has empirically demonstrated the effectiveness of a hybrid neural network model for density-based clustering. The cluster regions formed were then evaluated based on visualisation of clustering inform...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference or Workshop Item |
Published: |
2007
|
Subjects: | |
Online Access: | http://ir.unimas.my/id/eprint/10016/ http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658356 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.unimas.ir.10016 |
---|---|
record_format |
eprints |
spelling |
my.unimas.ir.100162016-01-05T03:36:05Z http://ir.unimas.my/id/eprint/10016/ Interactive Evolutionary Computation and Density- based Clustering for Data Analysis Teh, Chee Siong Chen, Chwen Jen L Education (General) T Technology (General) Data clustering is useful in solving many pattern recognition and decision support tasks. This work has empirically demonstrated the effectiveness of a hybrid neural network model for density-based clustering. The cluster regions formed were then evaluated based on visualisation of clustering information on the map. The visual inspection of the map revealed the number of clusters as well as their spatial relationships. By analysing the clustering information in this way, the cluster (or density) structures of the data were obtained. In this paper, a case study of pen-based handwritten digits recognition was chosen to demonstrate how, in this by using the interactive evolutionary computational (IEC), both the computer system and the user work together in the cluster analysis process and subsequently, shown that this approach is suitable for exploratory data analysis. 2007 Conference or Workshop Item NonPeerReviewed Teh, Chee Siong and Chen, Chwen Jen (2007) Interactive Evolutionary Computation and Density- based Clustering for Data Analysis. In: Proceedings of International Conference on Intelligent & Advance Systems (ICIAS 2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658356 |
institution |
Universiti Malaysia Sarawak |
building |
Centre for Academic Information Services (CAIS) |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Sarawak |
content_source |
UNIMAS Institutional Repository |
url_provider |
http://ir.unimas.my/ |
topic |
L Education (General) T Technology (General) |
spellingShingle |
L Education (General) T Technology (General) Teh, Chee Siong Chen, Chwen Jen Interactive Evolutionary Computation and Density- based Clustering for Data Analysis |
description |
Data clustering is useful in solving many pattern recognition and decision support tasks. This work has empirically demonstrated the effectiveness of a hybrid neural network model for density-based clustering. The cluster regions formed were then evaluated based on visualisation of clustering information on the map. The visual inspection of the map revealed the number of clusters as well as their spatial relationships. By analysing the clustering information in this way, the cluster (or density) structures of the data were obtained. In this paper, a case study of pen-based handwritten digits recognition was chosen to demonstrate how, in this by using the interactive evolutionary computational (IEC), both the computer system and the user work together in the cluster analysis process and subsequently, shown that this approach is suitable for exploratory data analysis. |
format |
Conference or Workshop Item |
author |
Teh, Chee Siong Chen, Chwen Jen |
author_facet |
Teh, Chee Siong Chen, Chwen Jen |
author_sort |
Teh, Chee Siong |
title |
Interactive Evolutionary Computation and Density- based Clustering for Data Analysis |
title_short |
Interactive Evolutionary Computation and Density- based Clustering for Data Analysis |
title_full |
Interactive Evolutionary Computation and Density- based Clustering for Data Analysis |
title_fullStr |
Interactive Evolutionary Computation and Density- based Clustering for Data Analysis |
title_full_unstemmed |
Interactive Evolutionary Computation and Density- based Clustering for Data Analysis |
title_sort |
interactive evolutionary computation and density- based clustering for data analysis |
publishDate |
2007 |
url |
http://ir.unimas.my/id/eprint/10016/ http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658356 |
_version_ |
1644510839650123776 |
score |
13.214268 |