Bearing fault diagnosis in high noise environment using multi-scale processing, channel-attention and feature-enhanced convolutional neural network model

This paper presents a model using deep learning techniques which includes Multi-scale processing, Channel attention, Feature enhancement, and anomaly Classification layers, referred to as MCFCNN, for bearing fault diagnosis in noisy industrial environments. The MCFCNN network combines multi-channel...

詳細記述

保存先:
書誌詳細
主要な著者: Xiuyu, Li, Shirley Johnathan, Tanjong
フォーマット: 論文
言語:English
出版事項: Learning Gate 2025
主題:
オンライン・アクセス:http://ir.unimas.my/id/eprint/47773/1/3601-EAST20259%282%292132-2146.pdf
http://ir.unimas.my/id/eprint/47773/
https://learning-gate.com/index.php/2576-8484/article/view/5050
https://doi.org/10.55214/25768484.v9i2.5050
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

類似資料