Bearing fault diagnosis in high noise environment using multi-scale processing, channel-attention and feature-enhanced convolutional neural network model
This paper presents a model using deep learning techniques which includes Multi-scale processing, Channel attention, Feature enhancement, and anomaly Classification layers, referred to as MCFCNN, for bearing fault diagnosis in noisy industrial environments. The MCFCNN network combines multi-channel...
保存先:
主要な著者: | Xiuyu, Li, Shirley Johnathan, Tanjong |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Learning Gate
2025
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/47773/1/3601-EAST20259%282%292132-2146.pdf http://ir.unimas.my/id/eprint/47773/ https://learning-gate.com/index.php/2576-8484/article/view/5050 https://doi.org/10.55214/25768484.v9i2.5050 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
類似資料
-
Classification of Bearing Degradation Stage Based on Automatic Label Assignment and Multi-scale Channel-attention Network
著者:: Xiuyu, Li, 等
出版事項: (2025) -
Bearing fault diagnosis employing gabor and augmented architecture of convolutional neural network
著者:: Waziralilah, N. F., 等
出版事項: (2019) -
Bearing fault diagnosis employing gabor and augmented architecture of convolutional neural network
著者:: Waziralilah, N. F., 等
出版事項: (2019) -
Noise eliminated ensemble empirical mode decomposition for bearing fault diagnosis
著者:: Atik, Faysal, 等
出版事項: (2021) -
Bearing fault diagnosis using lightweight and robust one-dimensional convolution neural network in the frequency domain
著者:: Hakim, Mohammed, 等
出版事項: (2022)