Enhancing Wearable-Based Human Activity Recognition with Binary Nature-Inspired Optimization Algorithms for Feature Selection
This research paper explores the performance of binary nature-inspired optimization algorithms as feature selection to enhance the identification of human activities using wearable technology. Utilization of nature-inspired algorithms for feature selection, as documented in scholarly literature, pr...
保存先:
主要な著者: | , , , , |
---|---|
フォーマット: | 論文 |
言語: | English |
出版事項: |
Semarak Ilmu Publishing
2026
|
主題: | |
オンライン・アクセス: | http://ir.unimas.my/id/eprint/47674/1/ARASETV56_N1_PP1_12.pdf http://ir.unimas.my/id/eprint/47674/ https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/article/view/6092 https://doi.org/10.37934/araset.56.1.112 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|