Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network

Link to publisher's homepage at http://ieeexplore.ieee.org/

Saved in:
Bibliographic Details
Main Authors: Paulraj, Murugesa Pandiyan, Prof. Madya, Sazali, Yaacob, Prof. Dr., Hazry, Desa, Prof. Madya Dr., Majid, W. M. R. W. A.
Format: Working Paper
Language:English
Published: Institute of Electrical and Elctronics Engineering (IEEE) 2010
Subjects:
Online Access:http://dspace.unimap.edu.my/xmlui/handle/123456789/8702
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimap-8702
record_format dspace
spelling my.unimap-87022010-08-16T08:39:46Z Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network Paulraj, Murugesa Pandiyan, Prof. Madya Sazali, Yaacob, Prof. Dr. Hazry, Desa, Prof. Madya Dr. Majid, W. M. R. W. A. Head and hand gestures Discrete cosine transform (DCT) Sign language recognition Neural network International Colloquium on Signal Processing & Its Applications (CSPA) 2009 Link to publisher's homepage at http://ieeexplore.ieee.org/ This paper presents simple methods for translating Kod Tangan Bahasa Melayu (KTBM) into voice signal based on subject head and two hand gestures. Different gesture signs made by different subjects are captured using a USB web camera in RGB video stream format with a screen bit depth of 24 bits and a resolution of 320 X 240 pixels. The recorded video of the sign language is divided into number of image frames. Using a simple segmentation technique, the frame image is segmented into three region namely, head region, left hand region and right hand region. After performing the image segmentation, the image frames are converted into binary image format. A simple feature extraction method is then applied and the variations of the features in the subsequent frame are modeled using Discrete Cosine Transform (DCT). The features extracted are associated to the equivalent voice sound and a simple neural network model trained by error prob method is developed. An audio system is used to play the equivalent voice signal from the recognized sign language. Experimental results demonstrate that the recognition rate of the proposed neural network models is about 81.07%. 2010-08-16T08:39:46Z 2010-08-16T08:39:46Z 2009-03-06 Working Paper p.19-22 978-1-4244-4150-1 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5069179&tag=1 http://hdl.handle.net/123456789/8702 en Proceedings of the 5th International Colloquium on Signal Processing and Its Applications (CSPA) 2009 Institute of Electrical and Elctronics Engineering (IEEE)
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Head and hand gestures
Discrete cosine transform (DCT)
Sign language recognition
Neural network
International Colloquium on Signal Processing & Its Applications (CSPA) 2009
spellingShingle Head and hand gestures
Discrete cosine transform (DCT)
Sign language recognition
Neural network
International Colloquium on Signal Processing & Its Applications (CSPA) 2009
Paulraj, Murugesa Pandiyan, Prof. Madya
Sazali, Yaacob, Prof. Dr.
Hazry, Desa, Prof. Madya Dr.
Majid, W. M. R. W. A.
Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
description Link to publisher's homepage at http://ieeexplore.ieee.org/
format Working Paper
author Paulraj, Murugesa Pandiyan, Prof. Madya
Sazali, Yaacob, Prof. Dr.
Hazry, Desa, Prof. Madya Dr.
Majid, W. M. R. W. A.
author_facet Paulraj, Murugesa Pandiyan, Prof. Madya
Sazali, Yaacob, Prof. Dr.
Hazry, Desa, Prof. Madya Dr.
Majid, W. M. R. W. A.
author_sort Paulraj, Murugesa Pandiyan, Prof. Madya
title Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
title_short Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
title_full Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
title_fullStr Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
title_full_unstemmed Gesture recognition system for Kod Tangan Bahasa Melayu (KTBM) using neural network
title_sort gesture recognition system for kod tangan bahasa melayu (ktbm) using neural network
publisher Institute of Electrical and Elctronics Engineering (IEEE)
publishDate 2010
url http://dspace.unimap.edu.my/xmlui/handle/123456789/8702
_version_ 1643789250521464832
score 13.214268