Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based

Master of Science in Mechatronic Engineering

Saved in:
Bibliographic Details
Main Author: Nor Rashidah, Suhaimi
Other Authors: Wan Khairunizam, Wan Ahmad, Assoc. Prof. Dr.
Format: Thesis
Language:English
Published: Universiti Malaysia Perlis (UniMAP) 2017
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/handle/123456789/78035
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimap-78035
record_format dspace
spelling my.unimap-780352023-03-07T01:56:13Z Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based Nor Rashidah, Suhaimi Wan Khairunizam, Wan Ahmad, Assoc. Prof. Dr. Electromyography Muscles Cerebrovascular disease Virtual reality (VR) Virtual reality arm rehabilitation Master of Science in Mechatronic Engineering Every year, 15 million people worldwide suffer from stroke attack. Nearly six million dead and another five million are left permanently disabled. According to National Stroke Association of Malaysia (NASAM), stroke is the third leading cause of death in Malaysia after cardiovascular disease and cancer. Stroke may lead to serious disability including loss of vision or speech, muscle disability and confusion. Muscle impairment can be treated by intense use and active movement of affected limbs to stimulate the weak muscle and slowly develop the motor function which enables sufferers to slowly regain the movement of the affected limbs. Conventional stroke therapy is costly at the same time less engaging, thus virtual reality (VR) system could be the main focus of enhancing stroke rehabilitation giving the stroke patient the possibility of action involvement sense at the same time offering many other benefits such as reducing therapy cost, providing more realistic assessment and adaptable to patient condition. Currently researchers are developing various virtual reality arm rehabilitation for post stroke patients, but less of the arm training task are design with measuring the muscle activity and most of the movement sequence are random. In this research, 18 fundamental arm movements are analyzed using EMG acquisition system involving deltoid anterior, deltoid lateral, biceps, triceps, flexor and extensor. The EMG signals were pre-processed to eliminate noise. Three statistical features which are mean, standard deviation and amount of movement (AOM) were then extracted from the EMG signals to analyze arm movements and muscle activation. Based on the results, AOM feature was chosen to represent muscle activity and four most activated muscles which are deltoid lateral, deltoid anterior, biceps and triceps were identified with each having AOM of 2.061, 1.113, 0.911 and 0.394 respectively. These results are then employed to design movement sequences in real (physical) environment involving 2D coronal plane, the amount of movement from all movement sequence were obtained and compared with the ideal criterion of rehabilitation (warming up, intensive and cooling down). The results were comparable to the proposed muscle activity pattern and the selected movement sequences were translated into virtual environment. Final experiment was conducted in virtual environments where subjects interacted with virtual objects using 5DT data glove and webcam, results show that movements made in VE trigger higher AOM compare to real environment but have comparable pattern. Final experiment to assess the consistency of the VR based system, SD of AOM for each movement are calculated with the highest SD of 0.501 for more intensive movements which is acceptable as movement style are not fixed between subjects. Generally, the experimental results show that it is possible to design optimum functional movements for arm rehabilitation after stroke. The system was tested using healthy subjects and revealed with potential rehabilitation system for stroke patient. 2017 2023-03-07T01:56:13Z 2023-03-07T01:56:13Z Thesis http://dspace.unimap.edu.my:80/xmlui/handle/123456789/78035 en Universiti Malaysia Perlis (UniMAP) Universiti Malaysia Perlis (UniMAP) School of Mechatronic Engineering
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Electromyography
Muscles
Cerebrovascular disease
Virtual reality (VR)
Virtual reality arm rehabilitation
spellingShingle Electromyography
Muscles
Cerebrovascular disease
Virtual reality (VR)
Virtual reality arm rehabilitation
Nor Rashidah, Suhaimi
Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based
description Master of Science in Mechatronic Engineering
author2 Wan Khairunizam, Wan Ahmad, Assoc. Prof. Dr.
author_facet Wan Khairunizam, Wan Ahmad, Assoc. Prof. Dr.
Nor Rashidah, Suhaimi
format Thesis
author Nor Rashidah, Suhaimi
author_sort Nor Rashidah, Suhaimi
title Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based
title_short Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based
title_full Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based
title_fullStr Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based
title_full_unstemmed Design of arm movement for upper limb after stroke rehabilitation using enhanced VR-based
title_sort design of arm movement for upper limb after stroke rehabilitation using enhanced vr-based
publisher Universiti Malaysia Perlis (UniMAP)
publishDate 2017
url http://dspace.unimap.edu.my:80/xmlui/handle/123456789/78035
_version_ 1772813092018716672
score 13.214268