Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data

Link to publisher's homepage at http://jere.unimap.edu.my

Saved in:
Bibliographic Details
Main Authors: S. A., Abdul Shukor, Havenderpal, Singh, Nurush Syamimie, Mahmud, H., Ali, A. F., Ahmad Zaidi, M. S., Zanar Azalan, T. S., Tengku Amran, M. R., Ahmad
Other Authors: shazmin@unimap.edu.my
Format: Article
Language:English
Published: Universiti Malaysia Perlis (UniMAP) 2022
Subjects:
GPR
Online Access:http://dspace.unimap.edu.my:80/xmlui/handle/123456789/76847
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimap-76847
record_format dspace
spelling my.unimap-768472022-11-10T00:57:03Z Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data S. A., Abdul Shukor S. A., Abdul Shukor Havenderpal, Singh Nurush Syamimie, Mahmud H., Ali A. F., Ahmad Zaidi M. S., Zanar Azalan T. S., Tengku Amran M. R., Ahmad shazmin@unimap.edu.my Faculty of Electrical Engineering Technology, Universiti Malaysia Perlis (UniMAP) Malaysian Nuclear Agency Drop-flow algorithm GPR Underground object detection and reconstruction Link to publisher's homepage at http://jere.unimap.edu.my Ground Penetrating Radar (GPR) is very beneficial for underground object scanning and detection. It utilises radar pulses as the signal, hence it able to penetrate surfaces in obtaining the underneath information without disturbing and destructing the ground. However, its radargram output in hyperbolic signal are very challenging to be analysed. Thus, suitable algorithm has to be designed and developed to interpret the data. This work highlights on the usage of drop-flow algorithm in detecting important features of the hyperbolic signal. Previous study has shown that these features is promising in understanding and further, reconstructing the GPR data. Results show that the features extracted from the hyperbolic signal able to be identified for further processing, which is necessary for visualization purpose. 2022-11-10T00:57:03Z 2022-11-10T00:57:03Z 2022 Article Journal of Engineering Research and Education, vol.14, 2022, pages 25-33 1823-2981 (print) 2232-1098 (online) http://dspace.unimap.edu.my:80/xmlui/handle/123456789/76847 en Universiti Malaysia Perlis (UniMAP)
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Drop-flow algorithm
GPR
Underground object detection and reconstruction
spellingShingle Drop-flow algorithm
GPR
Underground object detection and reconstruction
S. A., Abdul Shukor
S. A., Abdul Shukor
Havenderpal, Singh
Nurush Syamimie, Mahmud
H., Ali
A. F., Ahmad Zaidi
M. S., Zanar Azalan
T. S., Tengku Amran
M. R., Ahmad
Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data
description Link to publisher's homepage at http://jere.unimap.edu.my
author2 shazmin@unimap.edu.my
author_facet shazmin@unimap.edu.my
S. A., Abdul Shukor
S. A., Abdul Shukor
Havenderpal, Singh
Nurush Syamimie, Mahmud
H., Ali
A. F., Ahmad Zaidi
M. S., Zanar Azalan
T. S., Tengku Amran
M. R., Ahmad
format Article
author S. A., Abdul Shukor
S. A., Abdul Shukor
Havenderpal, Singh
Nurush Syamimie, Mahmud
H., Ali
A. F., Ahmad Zaidi
M. S., Zanar Azalan
T. S., Tengku Amran
M. R., Ahmad
author_sort S. A., Abdul Shukor
title Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data
title_short Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data
title_full Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data
title_fullStr Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data
title_full_unstemmed Feature extraction for underground object reconstruction from Ground Penetrating Radar (GPR) data
title_sort feature extraction for underground object reconstruction from ground penetrating radar (gpr) data
publisher Universiti Malaysia Perlis (UniMAP)
publishDate 2022
url http://dspace.unimap.edu.my:80/xmlui/handle/123456789/76847
_version_ 1751537977033490432
score 13.214268