Missing values imputation for wind speed

Link to publisher's homepage at https://amci.unimap.edu.my/

Saved in:
Bibliographic Details
Main Authors: Nur Arina Bazilah, Kamisan, Siti Mariam Norrulashikin, Siti Fatimah, Hassan
Other Authors: nurarinabazilah@utm.my
Format: Article
Language:English
Published: Institute of Engineering Mathematics, Universiti Malaysia Perlis 2022
Subjects:
Online Access:http://dspace.unimap.edu.my:80/xmlui/handle/123456789/74400
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimap-74400
record_format dspace
spelling my.unimap-744002022-02-21T00:47:03Z Missing values imputation for wind speed Nur Arina Bazilah, Kamisan Siti Mariam Norrulashikin Siti Fatimah, Hassan nurarinabazilah@utm.my Autoregressive model Imputation Mean interpolation Missing values Wind speed Link to publisher's homepage at https://amci.unimap.edu.my/ Addressing missing values is important in the process of getting a precise and accurate result. If missing data are not treated appropriately, then the results could lead to biased estimates. But different series may require different strategies to estimate these missing values. Seasonal data has a repetitive cycle that is predictable. By disaggregating the data into it seasonal factors, clear information behavior of the data could be observed and will make it easier to deal with the missing value. In this paper, the performance of three different methods is being compared with each other. One of the imputation methods will used information from the seasonality for the missing values to enhance the imputation technique. the other two methods are mean interpolation and AR model as the missing values imputation. Wind speed data from Alor Setar, Malaysia are used for this purpose. From the error measurement, the enhanced technique gives the best performance compared to the other two techniques. 2022-02-21T00:47:03Z 2022-02-21T00:47:03Z 2021-12 Article Applied Mathematics and Computational Intelligence (AMCI), vol.10(1), 2021, pages 319-327 2289-1315 (print) 2289-1323 (online) http://dspace.unimap.edu.my:80/xmlui/handle/123456789/74400 https://amci.unimap.edu.my/ en Institute of Engineering Mathematics, Universiti Malaysia Perlis
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Autoregressive model
Imputation
Mean interpolation
Missing values
Wind speed
spellingShingle Autoregressive model
Imputation
Mean interpolation
Missing values
Wind speed
Nur Arina Bazilah, Kamisan
Siti Mariam Norrulashikin
Siti Fatimah, Hassan
Missing values imputation for wind speed
description Link to publisher's homepage at https://amci.unimap.edu.my/
author2 nurarinabazilah@utm.my
author_facet nurarinabazilah@utm.my
Nur Arina Bazilah, Kamisan
Siti Mariam Norrulashikin
Siti Fatimah, Hassan
format Article
author Nur Arina Bazilah, Kamisan
Siti Mariam Norrulashikin
Siti Fatimah, Hassan
author_sort Nur Arina Bazilah, Kamisan
title Missing values imputation for wind speed
title_short Missing values imputation for wind speed
title_full Missing values imputation for wind speed
title_fullStr Missing values imputation for wind speed
title_full_unstemmed Missing values imputation for wind speed
title_sort missing values imputation for wind speed
publisher Institute of Engineering Mathematics, Universiti Malaysia Perlis
publishDate 2022
url http://dspace.unimap.edu.my:80/xmlui/handle/123456789/74400
_version_ 1729704766464851968
score 13.222552