Minimum input variances for modelling rainfall-runoff using ANN
Link to publisher's homepage at http://www.penerbit.utm.my/
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Penerbit UTM Press
2015
|
Subjects: | |
Online Access: | http://dspace.unimap.edu.my:80/xmlui/handle/123456789/40074 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.unimap-40074 |
---|---|
record_format |
dspace |
spelling |
my.unimap-400742015-06-04T02:23:11Z Minimum input variances for modelling rainfall-runoff using ANN Zulkarnain, Hassan Supiah, Shamsudin, Assoc. Prof. Sobri, Harun, Prof. Madya Dr. zulkarnain.hassan87@gmail.com supiah@utm.my sobriharun@utm.my Artificial neural network IHACRES Rainfall-runoff Runoff Link to publisher's homepage at http://www.penerbit.utm.my/ This paper presents the study of possible input variances for modeling the long-term runoff series using artificial neural network (ANN). ANN has the ability to derive the relationship between the inputs and outputs of a PROCESS without the physics being provided to it, and it is believed to be more flexible to be used compared to the conceptual models [1]. Data series from the Kurau River sub-catchment was applied to build the ANN networks and the model was calibrated using the input of rainfall, antecedent rainfall, temperature, antecedent temperature and antecedent runoff. In addition, the results were compared with the conceptual model, named IHACRES. The study reveal that ANN and IHACRES can simulate well for mean runoff but ANN gives a remarkable performance compared to IHACRES, if the model customizes with a good configuration. 2015-06-04T02:23:11Z 2015-06-04T02:23:11Z 2014 Article Jurnal Teknologi (Sciences and Engineering), vol. 69(3), 2014, pages 113-118 0127-9696 (P) 2180-3722 (O) http://www.jurnalteknologi.utm.my/index.php/jurnalteknologi/article/view/3154 http://dspace.unimap.edu.my:80/xmlui/handle/123456789/40074 en Penerbit UTM Press |
institution |
Universiti Malaysia Perlis |
building |
UniMAP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Perlis |
content_source |
UniMAP Library Digital Repository |
url_provider |
http://dspace.unimap.edu.my/ |
language |
English |
topic |
Artificial neural network IHACRES Rainfall-runoff Runoff |
spellingShingle |
Artificial neural network IHACRES Rainfall-runoff Runoff Zulkarnain, Hassan Supiah, Shamsudin, Assoc. Prof. Sobri, Harun, Prof. Madya Dr. Minimum input variances for modelling rainfall-runoff using ANN |
description |
Link to publisher's homepage at http://www.penerbit.utm.my/ |
author2 |
zulkarnain.hassan87@gmail.com |
author_facet |
zulkarnain.hassan87@gmail.com Zulkarnain, Hassan Supiah, Shamsudin, Assoc. Prof. Sobri, Harun, Prof. Madya Dr. |
format |
Article |
author |
Zulkarnain, Hassan Supiah, Shamsudin, Assoc. Prof. Sobri, Harun, Prof. Madya Dr. |
author_sort |
Zulkarnain, Hassan |
title |
Minimum input variances for modelling rainfall-runoff using ANN |
title_short |
Minimum input variances for modelling rainfall-runoff using ANN |
title_full |
Minimum input variances for modelling rainfall-runoff using ANN |
title_fullStr |
Minimum input variances for modelling rainfall-runoff using ANN |
title_full_unstemmed |
Minimum input variances for modelling rainfall-runoff using ANN |
title_sort |
minimum input variances for modelling rainfall-runoff using ann |
publisher |
Penerbit UTM Press |
publishDate |
2015 |
url |
http://dspace.unimap.edu.my:80/xmlui/handle/123456789/40074 |
_version_ |
1643799260894855168 |
score |
13.214268 |