Fabrication and characterization of ZnO nanostructures for DNA detection

Zinc oxide (ZnO), a representative of group II-IV metal-oxide semiconductor material is widely studied in the current research community. ZnO with its wide direct band-gap (3.37eV) and high exciton binding energy (60meV) providing the advantages of their electrical and optical properties. Due to...

Full description

Saved in:
Bibliographic Details
Main Author: Foo, Kai L0ong
Format: Thesis
Language:English
Published: Universiti Malaysia Perlis (UniMAP) 2014
Subjects:
Online Access:http://dspace.unimap.edu.my:80/dspace/handle/123456789/31220
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimap-31220
record_format dspace
spelling my.unimap-312202019-09-26T08:33:40Z Fabrication and characterization of ZnO nanostructures for DNA detection Foo, Kai L0ong Nanostructure Zinc oxide (ZnO) DNA immobilization Hybridization detection ZnO thin films Zinc oxide (ZnO), a representative of group II-IV metal-oxide semiconductor material is widely studied in the current research community. ZnO with its wide direct band-gap (3.37eV) and high exciton binding energy (60meV) providing the advantages of their electrical and optical properties. Due to these unique properties and easiness to grow using bottom-up approach combines with high isoelectric point, toxic-free, high surface-area-to-volume ratio, biosafe, and biocompatible, ZnO nanostructures have great interest in the application of biosensor. The aim of this research work is to synthesis, fabricate, and characterize ZnO nanostructures based sensor for DNA immobilization and hybridization detection. Two types of ZnO nanostructures were studied, namely thin films and nanorods (NRs). Highly transparent ZnO thin films were successfully synthesized using ease and low-cost sol-gel spin-coating method. ZnO NRs with nanoscale possessed high crystalline structure was further grown from the asprepared thin films through low-temperature hydrothermal growth. In this thesis, we studied the influence of different solvents on the structure, optical and electrical properties of the ZnO nanostructures. Four types of solvents namely methanol, ethanol, isopropanol, and 2-methoxyethanol had been chosen for ZnO seed solution preparation. The observed results using FESEM indicated that the nanoparticles and nanorods with the size less than 40 nanometer and 60 nanometer, respectively were successfully synthesized. The investigation on optical properties using UV-Vis-NIR spectrophotometer confirmed ZnO is classified as a wide band gap semiconductor material. In order to fabricate a biosensor with high sensitivity and selectivity, a gold nanoparticles (GNPs) were selected for the surface modification of ZnO nanostructures which later formed gold-thiolate conjugation with thiol-modified ssDNA probes. Two approaches were used for the immobilization and hybridization of DNA detection, which were dielectric analysis and electrochemical analysis. DNA detection using dielectric analyzer was done on interdigitated electrodes gold modified ZnO thin films. The developed sensor clearly differentiated complementary and non-complementary of target DNA through the measurement of capacitance, permittivity, and impedance. DNA detection using electrochemical analysis with cyclic voltammetry confirmed surface ZnO NRs modified with (3-Aminopropyl)triethoxysilane (APTES) and gold nanoparticles provided better detection of target DNA in comparison with those only contained gold nanoparticles. 2014-01-15T08:19:19Z 2014-01-15T08:19:19Z 2013 Thesis http://dspace.unimap.edu.my:80/dspace/handle/123456789/31220 en Universiti Malaysia Perlis (UniMAP) Institute of Nano Electronic Engineering
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Nanostructure
Zinc oxide (ZnO)
DNA immobilization
Hybridization detection
ZnO thin films
spellingShingle Nanostructure
Zinc oxide (ZnO)
DNA immobilization
Hybridization detection
ZnO thin films
Foo, Kai L0ong
Fabrication and characterization of ZnO nanostructures for DNA detection
description Zinc oxide (ZnO), a representative of group II-IV metal-oxide semiconductor material is widely studied in the current research community. ZnO with its wide direct band-gap (3.37eV) and high exciton binding energy (60meV) providing the advantages of their electrical and optical properties. Due to these unique properties and easiness to grow using bottom-up approach combines with high isoelectric point, toxic-free, high surface-area-to-volume ratio, biosafe, and biocompatible, ZnO nanostructures have great interest in the application of biosensor. The aim of this research work is to synthesis, fabricate, and characterize ZnO nanostructures based sensor for DNA immobilization and hybridization detection. Two types of ZnO nanostructures were studied, namely thin films and nanorods (NRs). Highly transparent ZnO thin films were successfully synthesized using ease and low-cost sol-gel spin-coating method. ZnO NRs with nanoscale possessed high crystalline structure was further grown from the asprepared thin films through low-temperature hydrothermal growth. In this thesis, we studied the influence of different solvents on the structure, optical and electrical properties of the ZnO nanostructures. Four types of solvents namely methanol, ethanol, isopropanol, and 2-methoxyethanol had been chosen for ZnO seed solution preparation. The observed results using FESEM indicated that the nanoparticles and nanorods with the size less than 40 nanometer and 60 nanometer, respectively were successfully synthesized. The investigation on optical properties using UV-Vis-NIR spectrophotometer confirmed ZnO is classified as a wide band gap semiconductor material. In order to fabricate a biosensor with high sensitivity and selectivity, a gold nanoparticles (GNPs) were selected for the surface modification of ZnO nanostructures which later formed gold-thiolate conjugation with thiol-modified ssDNA probes. Two approaches were used for the immobilization and hybridization of DNA detection, which were dielectric analysis and electrochemical analysis. DNA detection using dielectric analyzer was done on interdigitated electrodes gold modified ZnO thin films. The developed sensor clearly differentiated complementary and non-complementary of target DNA through the measurement of capacitance, permittivity, and impedance. DNA detection using electrochemical analysis with cyclic voltammetry confirmed surface ZnO NRs modified with (3-Aminopropyl)triethoxysilane (APTES) and gold nanoparticles provided better detection of target DNA in comparison with those only contained gold nanoparticles.
format Thesis
author Foo, Kai L0ong
author_facet Foo, Kai L0ong
author_sort Foo, Kai L0ong
title Fabrication and characterization of ZnO nanostructures for DNA detection
title_short Fabrication and characterization of ZnO nanostructures for DNA detection
title_full Fabrication and characterization of ZnO nanostructures for DNA detection
title_fullStr Fabrication and characterization of ZnO nanostructures for DNA detection
title_full_unstemmed Fabrication and characterization of ZnO nanostructures for DNA detection
title_sort fabrication and characterization of zno nanostructures for dna detection
publisher Universiti Malaysia Perlis (UniMAP)
publishDate 2014
url http://dspace.unimap.edu.my:80/dspace/handle/123456789/31220
_version_ 1651868552292990976
score 13.222552