Design and development of an impeller wind turbine

In the area of wind turbine design, there is still scope of improvement. Today, wind energy - mainly by wind screw turbines - produces less than 1.0% of the total energy used worldwide. Practically, the efficiency of the standard three-blade wind screw turbines is around 30%. This type of turbine is...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmed Younus, Qasim
Format: Thesis
Language:English
Published: Universiti Malaysia Perlis (UniMAP) 2014
Subjects:
Online Access:http://dspace.unimap.edu.my:80/dspace/handle/123456789/31167
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.unimap-31167
record_format dspace
spelling my.unimap-311672014-01-12T13:59:26Z Design and development of an impeller wind turbine Ahmed Younus, Qasim Wind turbine design Electrical energy Vertical Axis Wind Turbine Electricity Mechanical energy Impeller wind turbine In the area of wind turbine design, there is still scope of improvement. Today, wind energy - mainly by wind screw turbines - produces less than 1.0% of the total energy used worldwide. Practically, the efficiency of the standard three-blade wind screw turbines is around 30%. This type of turbine is based on the wind lift force on rotating turbine. These turbines are quite expensive due to the complex aerodynamic shape of blades that are made of composite materials. A vertical axis wind turbine can be designed with high value of the drag factor. The present work relates to the design of a new impeller type vertical axis wind turbine, which is uses wind energy more effectively. This design presents a special frame design with vanes. The frame wind turbine is designed to increase the output of a wind turbine that uses kinetic energy of the wind. Five different models of the vertical axis wind turbine are fabricated and tested in a wind tunnel in the present work. They are three frame movable vane cavity shape, three frame movable vane cavity shape with amplifier gear, three frame fixed vane cavity shape, four frame movable vane cavity shape and three frame movable vane flat plate shape. The vanes are located on vertical bars installed in hinges of the frames. Such a design enables the rotation of the bars with frames under the action of wind force simultaneously at one direction and independently at other directions. The frames are connected with the shaft, of which one end is connected with the electric generator. The frames are designed with angular inclinations of vanes that create cavities when vanes are closed. On the other side of the impeller, when the movable vanes are open, and the frame is under wind action, the air passes freely through the frame, and decreases the negative torque. In all the models using cavity shaped vanes, 45˚vane angle is used.The results are presented in the form of drag coefficient, power coefficient, tip speed ratio for wind velocities varying from 5 m/sec to 17 m/sec. It is found that a three-frame movable vane cavity shape model has a maximum power coefficient (Cpmax) of 0.32 at a wind velocity 8 m/s and tip speed ratio 0.31. All other models give the values of Cpmax lower than this value for the same range of wind velocity. The proposed new impeller type vertical axis wind turbine can be used worldwide due to its high efficiency, simple construction, and simple technology. Further, the proposed wind turbine can also be made from cheap materials. 2014-01-12T13:59:25Z 2014-01-12T13:59:25Z 2013 Thesis http://dspace.unimap.edu.my:80/dspace/handle/123456789/31167 en Universiti Malaysia Perlis (UniMAP) School of Mechatronic Engineering
institution Universiti Malaysia Perlis
building UniMAP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Perlis
content_source UniMAP Library Digital Repository
url_provider http://dspace.unimap.edu.my/
language English
topic Wind turbine design
Electrical energy
Vertical Axis Wind Turbine
Electricity
Mechanical energy
Impeller wind turbine
spellingShingle Wind turbine design
Electrical energy
Vertical Axis Wind Turbine
Electricity
Mechanical energy
Impeller wind turbine
Ahmed Younus, Qasim
Design and development of an impeller wind turbine
description In the area of wind turbine design, there is still scope of improvement. Today, wind energy - mainly by wind screw turbines - produces less than 1.0% of the total energy used worldwide. Practically, the efficiency of the standard three-blade wind screw turbines is around 30%. This type of turbine is based on the wind lift force on rotating turbine. These turbines are quite expensive due to the complex aerodynamic shape of blades that are made of composite materials. A vertical axis wind turbine can be designed with high value of the drag factor. The present work relates to the design of a new impeller type vertical axis wind turbine, which is uses wind energy more effectively. This design presents a special frame design with vanes. The frame wind turbine is designed to increase the output of a wind turbine that uses kinetic energy of the wind. Five different models of the vertical axis wind turbine are fabricated and tested in a wind tunnel in the present work. They are three frame movable vane cavity shape, three frame movable vane cavity shape with amplifier gear, three frame fixed vane cavity shape, four frame movable vane cavity shape and three frame movable vane flat plate shape. The vanes are located on vertical bars installed in hinges of the frames. Such a design enables the rotation of the bars with frames under the action of wind force simultaneously at one direction and independently at other directions. The frames are connected with the shaft, of which one end is connected with the electric generator. The frames are designed with angular inclinations of vanes that create cavities when vanes are closed. On the other side of the impeller, when the movable vanes are open, and the frame is under wind action, the air passes freely through the frame, and decreases the negative torque. In all the models using cavity shaped vanes, 45˚vane angle is used.The results are presented in the form of drag coefficient, power coefficient, tip speed ratio for wind velocities varying from 5 m/sec to 17 m/sec. It is found that a three-frame movable vane cavity shape model has a maximum power coefficient (Cpmax) of 0.32 at a wind velocity 8 m/s and tip speed ratio 0.31. All other models give the values of Cpmax lower than this value for the same range of wind velocity. The proposed new impeller type vertical axis wind turbine can be used worldwide due to its high efficiency, simple construction, and simple technology. Further, the proposed wind turbine can also be made from cheap materials.
format Thesis
author Ahmed Younus, Qasim
author_facet Ahmed Younus, Qasim
author_sort Ahmed Younus, Qasim
title Design and development of an impeller wind turbine
title_short Design and development of an impeller wind turbine
title_full Design and development of an impeller wind turbine
title_fullStr Design and development of an impeller wind turbine
title_full_unstemmed Design and development of an impeller wind turbine
title_sort design and development of an impeller wind turbine
publisher Universiti Malaysia Perlis (UniMAP)
publishDate 2014
url http://dspace.unimap.edu.my:80/dspace/handle/123456789/31167
_version_ 1643796402644451328
score 13.214268