Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network
Link to publisher's homepage at http://ieeexplore.ieee.org/
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Working Paper |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2011
|
Subjects: | |
Online Access: | http://dspace.unimap.edu.my/xmlui/handle/123456789/11107 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.unimap-11107 |
---|---|
record_format |
dspace |
spelling |
my.unimap-111072011-03-09T03:57:14Z Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network M. K., Osman Mohd Yusoff, Mashor, Prof. Madya Dr. Jaafar, H. khusairi@ppinang.uitm.edu.my Biomedical image processing Image segmentation Neural network applications Link to publisher's homepage at http://ieeexplore.ieee.org/ Segmentation of Zeihl-Neelsen tissue slide images is an important step in computer-assisted tuberculosis bacilli detection. In Zeihl-Neelsen tissue slide image, colour is the most prominent feature to detect the presence of tuberculosis bacilli from its image. In this paper, an automatic colour image segmentation using neural network is proposed. The segmentation is based on supervised approach using Hybrid Multilayered Perceptron network. Colour images are converted to HSI colour space before being segmented by the network. The colour image are characterised in HSI colour space for better colour representation. Experimental results indicate that the proposed method provides good segmentation on variety of Ziehl-Neelsen tissue slide images. 2011-03-09T01:27:09Z 2011-03-09T01:27:09Z 2010-05-10 Working Paper p.365-368 978-1-4244-7165-2 http://ezproxy.unimap.edu.my:2080/stamp/stamp.jsp?tp=&arnumber=5605524 http://hdl.handle.net/123456789/11107 en Proceedings of the 10th International Conference on Information Sciences, Signal Processing and their Applications (ISSPA) 2010 Institute of Electrical and Electronics Engineers (IEEE) |
institution |
Universiti Malaysia Perlis |
building |
UniMAP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Perlis |
content_source |
UniMAP Library Digital Repository |
url_provider |
http://dspace.unimap.edu.my/ |
language |
English |
topic |
Biomedical image processing Image segmentation Neural network applications |
spellingShingle |
Biomedical image processing Image segmentation Neural network applications M. K., Osman Mohd Yusoff, Mashor, Prof. Madya Dr. Jaafar, H. Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network |
description |
Link to publisher's homepage at http://ieeexplore.ieee.org/ |
author2 |
khusairi@ppinang.uitm.edu.my |
author_facet |
khusairi@ppinang.uitm.edu.my M. K., Osman Mohd Yusoff, Mashor, Prof. Madya Dr. Jaafar, H. |
format |
Working Paper |
author |
M. K., Osman Mohd Yusoff, Mashor, Prof. Madya Dr. Jaafar, H. |
author_sort |
M. K., Osman |
title |
Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network |
title_short |
Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network |
title_full |
Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network |
title_fullStr |
Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network |
title_full_unstemmed |
Segmentation of tuberculosis bacilli in Ziehl-Neelsen tissue slide images using Hibrid Multilayered Perceptron network |
title_sort |
segmentation of tuberculosis bacilli in ziehl-neelsen tissue slide images using hibrid multilayered perceptron network |
publisher |
Institute of Electrical and Electronics Engineers (IEEE) |
publishDate |
2011 |
url |
http://dspace.unimap.edu.my/xmlui/handle/123456789/11107 |
_version_ |
1643789999481552896 |
score |
13.226497 |