Face detection : A comparison between histogram thresholding and neural networks

Face detection is an important process in many applications such as face recognition, person identification and tracking, and access control. The technique used for face detection depends on how a face is modelled. In this thesis, a face is defined as a skin region and a lips region that meet certai...

Full description

Saved in:
Bibliographic Details
Main Author: Jamal Ahmad Dargham
Format: Thesis
Language:English
English
Published: 2008
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/38702/1/24%20PAGES.pdf
https://eprints.ums.edu.my/id/eprint/38702/2/FULLTEXT.pdf
https://eprints.ums.edu.my/id/eprint/38702/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ums.eprints.38702
record_format eprints
spelling my.ums.eprints.387022024-05-17T08:36:11Z https://eprints.ums.edu.my/id/eprint/38702/ Face detection : A comparison between histogram thresholding and neural networks Jamal Ahmad Dargham TK8300-8360 Photoelectronic devices (General) Face detection is an important process in many applications such as face recognition, person identification and tracking, and access control. The technique used for face detection depends on how a face is modelled. In this thesis, a face is defined as a skin region and a lips region that meet certain geometrical criteria. Thus, the face detection system has three main components: a skin detection module, a lips detection module, and a face verification module. Multi-layer perceptron (MLP) neural networks and histogram thresholding techniques have been used for skin and lips detection. In order to test the face detection system, two databases were created. The images in the first database, called In-house, were taken under controlled environment while those in the second database, called WWW, were collected from the World Wide Web. Only the skin and the lips colour in the normalised RGB colour scheme were used for the skin and lips detection respectively. A new method for obtaining the r, g, and b components of the normalised RGB systems from the R, G, and B components of the RGB system was proposed. It was found out that the proposed method, called maximum intensity normalisation, gives higher percentage of correct skin detection than the conventional rgb colour scheme regardless of the database used or the skin detection method. Two methods were used to find the number of neurons in the hidden layer of the MLP. The first method use binary search between a minimum and a maximum values while the second method use sequential search with a stopping criteria. The effect of scale factor, facial expressions and minor occlusions with glasses on skin, lips and face detection was investigated. It was found out that, as the scale factor increases the percentage skin and lips detection error decreases. However, the percentage decrease in skin and lips detection errors depends on the intensity normalisation, the detection method and the chrominance component used. But the scale factor did not have any effect on the face detection. In general, the facial expression did not have any significant effect on skin detection. However, for lips detection, the laughing expression did give the highest lips detection error followed by smiling expression. Furthermore, the percentage increase in lips detection error as a result of the facial expression depends on the intensity normalisation, the detection method and the chrominance component used. As for face detection, the facial expression has a negative effect on the correct face detection especially at scale factor of 3. Although, the minor occlusion increases the skin detection error it has no significant effect on the performance of face detection. 2008 Thesis NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/38702/1/24%20PAGES.pdf text en https://eprints.ums.edu.my/id/eprint/38702/2/FULLTEXT.pdf Jamal Ahmad Dargham (2008) Face detection : A comparison between histogram thresholding and neural networks. Doctoral thesis, Universiti Malaysia Sabah.
institution Universiti Malaysia Sabah
building UMS Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sabah
content_source UMS Institutional Repository
url_provider http://eprints.ums.edu.my/
language English
English
topic TK8300-8360 Photoelectronic devices (General)
spellingShingle TK8300-8360 Photoelectronic devices (General)
Jamal Ahmad Dargham
Face detection : A comparison between histogram thresholding and neural networks
description Face detection is an important process in many applications such as face recognition, person identification and tracking, and access control. The technique used for face detection depends on how a face is modelled. In this thesis, a face is defined as a skin region and a lips region that meet certain geometrical criteria. Thus, the face detection system has three main components: a skin detection module, a lips detection module, and a face verification module. Multi-layer perceptron (MLP) neural networks and histogram thresholding techniques have been used for skin and lips detection. In order to test the face detection system, two databases were created. The images in the first database, called In-house, were taken under controlled environment while those in the second database, called WWW, were collected from the World Wide Web. Only the skin and the lips colour in the normalised RGB colour scheme were used for the skin and lips detection respectively. A new method for obtaining the r, g, and b components of the normalised RGB systems from the R, G, and B components of the RGB system was proposed. It was found out that the proposed method, called maximum intensity normalisation, gives higher percentage of correct skin detection than the conventional rgb colour scheme regardless of the database used or the skin detection method. Two methods were used to find the number of neurons in the hidden layer of the MLP. The first method use binary search between a minimum and a maximum values while the second method use sequential search with a stopping criteria. The effect of scale factor, facial expressions and minor occlusions with glasses on skin, lips and face detection was investigated. It was found out that, as the scale factor increases the percentage skin and lips detection error decreases. However, the percentage decrease in skin and lips detection errors depends on the intensity normalisation, the detection method and the chrominance component used. But the scale factor did not have any effect on the face detection. In general, the facial expression did not have any significant effect on skin detection. However, for lips detection, the laughing expression did give the highest lips detection error followed by smiling expression. Furthermore, the percentage increase in lips detection error as a result of the facial expression depends on the intensity normalisation, the detection method and the chrominance component used. As for face detection, the facial expression has a negative effect on the correct face detection especially at scale factor of 3. Although, the minor occlusion increases the skin detection error it has no significant effect on the performance of face detection.
format Thesis
author Jamal Ahmad Dargham
author_facet Jamal Ahmad Dargham
author_sort Jamal Ahmad Dargham
title Face detection : A comparison between histogram thresholding and neural networks
title_short Face detection : A comparison between histogram thresholding and neural networks
title_full Face detection : A comparison between histogram thresholding and neural networks
title_fullStr Face detection : A comparison between histogram thresholding and neural networks
title_full_unstemmed Face detection : A comparison between histogram thresholding and neural networks
title_sort face detection : a comparison between histogram thresholding and neural networks
publishDate 2008
url https://eprints.ums.edu.my/id/eprint/38702/1/24%20PAGES.pdf
https://eprints.ums.edu.my/id/eprint/38702/2/FULLTEXT.pdf
https://eprints.ums.edu.my/id/eprint/38702/
_version_ 1800089062385647616
score 13.211869