Human odour detection approach using machine learning

Recognizing the human considered as old and contemporary task. This problem is now solved by using biometrics. Technically biometrics is " the automated technique for measuring an individual's physical or personal characteristic and comparing it to a comprehensive database for identificati...

Full description

Saved in:
Bibliographic Details
Main Author: Ahmed Qusay Sabri
Format: Thesis
Language:English
English
Published: 2019
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/35177/1/24%20PAGES.pdf
https://eprints.ums.edu.my/id/eprint/35177/2/FULLTEXT.pdf
https://eprints.ums.edu.my/id/eprint/35177/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ums.eprints.35177
record_format eprints
spelling my.ums.eprints.351772023-03-09T06:59:55Z https://eprints.ums.edu.my/id/eprint/35177/ Human odour detection approach using machine learning Ahmed Qusay Sabri TK7800-8360 Electronics Recognizing the human considered as old and contemporary task. This problem is now solved by using biometrics. Technically biometrics is " the automated technique for measuring an individual's physical or personal characteristic and comparing it to a comprehensive database for identification purposes". This thesis presents a problem with the selection of appropriate human (Volatile Organic Compounds) voes emitted from sweat for human odour classification, all gasses emitted by humans through sweat have been collected and detected using the latest technology (High Resolution GCMS / TOF) Gas Chromatograph Mass Spectrometry/Time of Flight. Different people (15 people) with different ages and genders have been tested, some people have been tested several times. There is a total of 198 voes detected and methods for selecting features are used to determine which VOCs are suitable for classifying human odour. Two feature selection methods Entropy and Chi Square tests were used to identify and determine the best and most acceptable voes. There is a total of 16 stable voes extracted from 198 voes on the basis of the results obtained. In addition, 10 gasses are detected with zero values for both the entropy and the chi- square test, and these gasses are the strongest candidates to detect and classify odours. The results of this work can be used to classify specific voes for the detection of humans by odour. In this thesis, a framework for gender recognition is proposed based on human odour. 20 samples of human odour from male and female are collected, several different activation functions of the neural network (e.g., backpropagation of Levenberg-Marquardt, backpropagation of gradient descent and resilient backpropagation) and several different topologies of the neural network are tested. It is also found that with 2 hidden layers with more neurons in the hidden layers (16 and 16 neurons in which the hidden layer is) Levenberg-Marquardt was able to achieve a higher performance accuracy of 100%. The main investigations conducted in this thesis which is Human Identification from body odour followed by an investigation to prove stability and rigidity of person identification main findings. A framework for human identification is proposed distinctively based on specific human odour features. 15 samples of female and male human odour are collected from different age groups, severa I diverse functions of neural network activation are tested such as Gradient descent backpropagation, Levenberg-Marquardt back propagation, and Resilient backpropagation. Besides, numerous neural network topologies are tested by means of a selection of number of neurons and hidden layers. Different activation functions were tested TANSigmoid transfer, Linear transfer, and LOG-Sigmoid transfer. Considering the obtained results, employing two hidden layers with more neurons in the hidden layers- to be specific: 15 neurons in every layer- has yielded better accuracy in performance with an accuracy rate of 100%. The unsurpassed framework for learning algorithm to be used for human identification is Levenberg-Marquardt backpropagation learning algorithm. The best function for activation established in this research is the function of TAN- Sigmoid transfer. Finally, we investigate the effects of missing gases in human odour sample to evaluate the accuracy of classifying individual person. These missing values will be replaced by Random number between O and 1 as our research prove, the best accuracy result when missing values are introduced in the odour dataset is the Ensemble Bagged Trees. 2019 Thesis NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/35177/1/24%20PAGES.pdf text en https://eprints.ums.edu.my/id/eprint/35177/2/FULLTEXT.pdf Ahmed Qusay Sabri (2019) Human odour detection approach using machine learning. Post-Doctoral thesis, Universiti Malaysia Sabah.
institution Universiti Malaysia Sabah
building UMS Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sabah
content_source UMS Institutional Repository
url_provider http://eprints.ums.edu.my/
language English
English
topic TK7800-8360 Electronics
spellingShingle TK7800-8360 Electronics
Ahmed Qusay Sabri
Human odour detection approach using machine learning
description Recognizing the human considered as old and contemporary task. This problem is now solved by using biometrics. Technically biometrics is " the automated technique for measuring an individual's physical or personal characteristic and comparing it to a comprehensive database for identification purposes". This thesis presents a problem with the selection of appropriate human (Volatile Organic Compounds) voes emitted from sweat for human odour classification, all gasses emitted by humans through sweat have been collected and detected using the latest technology (High Resolution GCMS / TOF) Gas Chromatograph Mass Spectrometry/Time of Flight. Different people (15 people) with different ages and genders have been tested, some people have been tested several times. There is a total of 198 voes detected and methods for selecting features are used to determine which VOCs are suitable for classifying human odour. Two feature selection methods Entropy and Chi Square tests were used to identify and determine the best and most acceptable voes. There is a total of 16 stable voes extracted from 198 voes on the basis of the results obtained. In addition, 10 gasses are detected with zero values for both the entropy and the chi- square test, and these gasses are the strongest candidates to detect and classify odours. The results of this work can be used to classify specific voes for the detection of humans by odour. In this thesis, a framework for gender recognition is proposed based on human odour. 20 samples of human odour from male and female are collected, several different activation functions of the neural network (e.g., backpropagation of Levenberg-Marquardt, backpropagation of gradient descent and resilient backpropagation) and several different topologies of the neural network are tested. It is also found that with 2 hidden layers with more neurons in the hidden layers (16 and 16 neurons in which the hidden layer is) Levenberg-Marquardt was able to achieve a higher performance accuracy of 100%. The main investigations conducted in this thesis which is Human Identification from body odour followed by an investigation to prove stability and rigidity of person identification main findings. A framework for human identification is proposed distinctively based on specific human odour features. 15 samples of female and male human odour are collected from different age groups, severa I diverse functions of neural network activation are tested such as Gradient descent backpropagation, Levenberg-Marquardt back propagation, and Resilient backpropagation. Besides, numerous neural network topologies are tested by means of a selection of number of neurons and hidden layers. Different activation functions were tested TANSigmoid transfer, Linear transfer, and LOG-Sigmoid transfer. Considering the obtained results, employing two hidden layers with more neurons in the hidden layers- to be specific: 15 neurons in every layer- has yielded better accuracy in performance with an accuracy rate of 100%. The unsurpassed framework for learning algorithm to be used for human identification is Levenberg-Marquardt backpropagation learning algorithm. The best function for activation established in this research is the function of TAN- Sigmoid transfer. Finally, we investigate the effects of missing gases in human odour sample to evaluate the accuracy of classifying individual person. These missing values will be replaced by Random number between O and 1 as our research prove, the best accuracy result when missing values are introduced in the odour dataset is the Ensemble Bagged Trees.
format Thesis
author Ahmed Qusay Sabri
author_facet Ahmed Qusay Sabri
author_sort Ahmed Qusay Sabri
title Human odour detection approach using machine learning
title_short Human odour detection approach using machine learning
title_full Human odour detection approach using machine learning
title_fullStr Human odour detection approach using machine learning
title_full_unstemmed Human odour detection approach using machine learning
title_sort human odour detection approach using machine learning
publishDate 2019
url https://eprints.ums.edu.my/id/eprint/35177/1/24%20PAGES.pdf
https://eprints.ums.edu.my/id/eprint/35177/2/FULLTEXT.pdf
https://eprints.ums.edu.my/id/eprint/35177/
_version_ 1760231393471758336
score 13.209306