Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks

The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. Howeve...

詳細記述

保存先:
書誌詳細
主要な著者: Azam Khalili, Vahid Vahidpour, Amir Rastegarnia, Ali Farzamnia, Teo, Kenneth Tze Kin, Saeid Sanei
フォーマット: 論文
言語:English
English
出版事項: MDPI 2021
主題:
オンライン・アクセス:https://eprints.ums.edu.my/id/eprint/32939/1/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks.pdf
https://eprints.ums.edu.my/id/eprint/32939/2/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks1.pdf
https://eprints.ums.edu.my/id/eprint/32939/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621694/pdf/sensors-21-07732.pdf
https://doi.org/10.3390/s21227732
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!