Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks
The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. Howeve...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
MDPI
2021
|
Subjects: | |
Online Access: | https://eprints.ums.edu.my/id/eprint/32939/1/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks.pdf https://eprints.ums.edu.my/id/eprint/32939/2/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks1.pdf https://eprints.ums.edu.my/id/eprint/32939/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621694/pdf/sensors-21-07732.pdf https://doi.org/10.3390/s21227732 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Internet
https://eprints.ums.edu.my/id/eprint/32939/1/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks.pdfhttps://eprints.ums.edu.my/id/eprint/32939/2/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks1.pdf
https://eprints.ums.edu.my/id/eprint/32939/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621694/pdf/sensors-21-07732.pdf
https://doi.org/10.3390/s21227732