Coordinate-Descent Adaptation over Hamiltonian Multi-Agent Networks
The incremental least-mean-square (ILMS) algorithm is a useful method to perform distributed adaptation and learning in Hamiltonian networks. To implement the ILMS algorithm, each node needs to receive the local estimate of the previous node on the cycle path to update its own local estimate. Howeve...
保存先:
主要な著者: | , , , , , |
---|---|
フォーマット: | 論文 |
言語: | English English |
出版事項: |
MDPI
2021
|
主題: | |
オンライン・アクセス: | https://eprints.ums.edu.my/id/eprint/32939/1/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks.pdf https://eprints.ums.edu.my/id/eprint/32939/2/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks1.pdf https://eprints.ums.edu.my/id/eprint/32939/ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621694/pdf/sensors-21-07732.pdf https://doi.org/10.3390/s21227732 |
タグ: |
タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!
|
インターネット
https://eprints.ums.edu.my/id/eprint/32939/1/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks.pdfhttps://eprints.ums.edu.my/id/eprint/32939/2/Coordinate-Descent%20Adaptation%20over%20Hamiltonian%20Multi-Agent%20Networks1.pdf
https://eprints.ums.edu.my/id/eprint/32939/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8621694/pdf/sensors-21-07732.pdf
https://doi.org/10.3390/s21227732