Prediction of Agricultural Water Consumption in 2 Regions of China Based on Fractional-Order Cumulative Discrete GreyModel

In this paper, a new forecasting method of agricultural water demand, fractional-order cumulative discrete grey model, is proposed. Firstly, the best fitting of historical data is used to construct the optimization model. MATLAB programming is applied to solve the optimization model and obtain the o...

全面介绍

Saved in:
书目详细资料
Main Authors: Yunhong Xu, Huadong Wang, Nga, Lay Hui
格式: Article
语言:English
English
出版: Hindawi 2021
主题:
在线阅读:https://eprints.ums.edu.my/id/eprint/32219/1/Prediction%20of%20Agricultural%20Water%20Consumption%20in%202%20Regions%20of%20China%20Based%20on%20Fractional-Order%20Cumulative%20Discrete%20GreyModel.pdf
https://eprints.ums.edu.my/id/eprint/32219/2/Prediction%20of%20Agricultural%20Water%20Consumption%20in%202%20Regions%20of%20China%20Based%20on%20Fractional-Order%20Cumulative%20Discrete%20GreyModel1.pdf
https://eprints.ums.edu.my/id/eprint/32219/
https://www.hindawi.com/journals/jmath/2021/3023385/
https://doi.org/10.1155/2021/3023385
标签: 添加标签
没有标签, 成为第一个标记此记录!
实物特征
总结:In this paper, a new forecasting method of agricultural water demand, fractional-order cumulative discrete grey model, is proposed. Firstly, the best fitting of historical data is used to construct the optimization model. MATLAB programming is applied to solve the optimization model and obtain the optimal order. Secondly, the fractional-order cumulative discrete grey model in this paper is compared with GM (1, 1) model to verify the performance of the model. Finally, Handan region of Hebei Province and Jingzhou region of Hubei Province were selected as the study areas to predict their agricultural water consumptions. .e results show that the fractional-order cumulative discrete grey model has better prediction performance than the GM (1, 1) model. It can be used as an effective method for forecasting agricultural water consumption.