Second Hankel Determinant for Strongly Bi-Starlike of order α

Let A denote the class of functions f (z) = z + �∞ n=2 anz n which are analytic in the open unit disc U = {z : |z| < 1}. Let S denote the class of all functions in A that are univalent in U. A function f ∈ A is said to be bi-univalent in U if both f and f −1 are univalent in U. Let denote the cla...

全面介紹

Saved in:
書目詳細資料
Main Authors: Chow Li Yong, Aini Janteng, Suzeini Abd. Halim
格式: Article
語言:English
English
出版: 2018
主題:
在線閱讀:https://eprints.ums.edu.my/id/eprint/25749/1/Second%20Hankel%20Determinant%20for%20Strongly%20Bi-Starlike%20of%20order%20%CE%B1.pdf
https://eprints.ums.edu.my/id/eprint/25749/2/Second%20Hankel%20Determinant%20for%20Strongly%20Bi-Starlike%20of%20order%20%CE%B1%201.pdf
https://eprints.ums.edu.my/id/eprint/25749/
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id my.ums.eprints.25749
record_format eprints
spelling my.ums.eprints.257492021-04-19T04:36:23Z https://eprints.ums.edu.my/id/eprint/25749/ Second Hankel Determinant for Strongly Bi-Starlike of order α Chow Li Yong Aini Janteng Suzeini Abd. Halim Q Science (General) Let A denote the class of functions f (z) = z + �∞ n=2 anz n which are analytic in the open unit disc U = {z : |z| < 1}. Let S denote the class of all functions in A that are univalent in U. A function f ∈ A is said to be bi-univalent in U if both f and f −1 are univalent in U. Let denote the class of bi-univalent functions in U. In this paper, we obtained the upper bounds for the second Hankel functional |a2a4 − a2 3 | for strongly bi-starlike of order α. 2018 Article PeerReviewed text en https://eprints.ums.edu.my/id/eprint/25749/1/Second%20Hankel%20Determinant%20for%20Strongly%20Bi-Starlike%20of%20order%20%CE%B1.pdf text en https://eprints.ums.edu.my/id/eprint/25749/2/Second%20Hankel%20Determinant%20for%20Strongly%20Bi-Starlike%20of%20order%20%CE%B1%201.pdf Chow Li Yong and Aini Janteng and Suzeini Abd. Halim (2018) Second Hankel Determinant for Strongly Bi-Starlike of order α. Global Journal of Pure and Applied Mathematics. er 6 (2018), pp. 841–849, 14 (6). pp. 841-849. ISSN 0973-1768
institution Universiti Malaysia Sabah
building UMS Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Sabah
content_source UMS Institutional Repository
url_provider http://eprints.ums.edu.my/
language English
English
topic Q Science (General)
spellingShingle Q Science (General)
Chow Li Yong
Aini Janteng
Suzeini Abd. Halim
Second Hankel Determinant for Strongly Bi-Starlike of order α
description Let A denote the class of functions f (z) = z + �∞ n=2 anz n which are analytic in the open unit disc U = {z : |z| < 1}. Let S denote the class of all functions in A that are univalent in U. A function f ∈ A is said to be bi-univalent in U if both f and f −1 are univalent in U. Let denote the class of bi-univalent functions in U. In this paper, we obtained the upper bounds for the second Hankel functional |a2a4 − a2 3 | for strongly bi-starlike of order α.
format Article
author Chow Li Yong
Aini Janteng
Suzeini Abd. Halim
author_facet Chow Li Yong
Aini Janteng
Suzeini Abd. Halim
author_sort Chow Li Yong
title Second Hankel Determinant for Strongly Bi-Starlike of order α
title_short Second Hankel Determinant for Strongly Bi-Starlike of order α
title_full Second Hankel Determinant for Strongly Bi-Starlike of order α
title_fullStr Second Hankel Determinant for Strongly Bi-Starlike of order α
title_full_unstemmed Second Hankel Determinant for Strongly Bi-Starlike of order α
title_sort second hankel determinant for strongly bi-starlike of order α
publishDate 2018
url https://eprints.ums.edu.my/id/eprint/25749/1/Second%20Hankel%20Determinant%20for%20Strongly%20Bi-Starlike%20of%20order%20%CE%B1.pdf
https://eprints.ums.edu.my/id/eprint/25749/2/Second%20Hankel%20Determinant%20for%20Strongly%20Bi-Starlike%20of%20order%20%CE%B1%201.pdf
https://eprints.ums.edu.my/id/eprint/25749/
_version_ 1760230408704753664
score 13.250246