Development of anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm length of diamine monomer

Chromatography technique is widely used for protein separation. Conventional packed bed column chromatography has several limitations. Membrane chromatography was a suitable alternative technique for protein separation. Specific monomer can be grafted to uncharged membrane to transform into membrane...

Full description

Saved in:
Bibliographic Details
Main Author: Lee, Yue Wei
Format: Undergraduates Project Papers
Language:English
Published: 2013
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/7169/1/Development%20of%20anion-exchange%20membrane%20chromatography%20from%20regenerated%20cellulose%20membrane%20by%20attaching%20different%20spacer%20arm%20length%20of%20diamine%20monomer.pdf
http://umpir.ump.edu.my/id/eprint/7169/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chromatography technique is widely used for protein separation. Conventional packed bed column chromatography has several limitations. Membrane chromatography was a suitable alternative technique for protein separation. Specific monomer can be grafted to uncharged membrane to transform into membrane chromatography material. Optimization of parameters involve during this chemical modification is crucial for the development of high performance membrane chromatography for protein separation. The purpose of this research is to develop anion-exchange membrane chromatography from regenerated cellulose membrane by attaching different spacer arm lengths of diamine monomer. Regenerated cellulose membrane was activated in a solution containing sodium hydroxide (NaOH) and epichlorohydrin (EPI). Then, the membrane was immersed in diamine solution of 1,2-diaminoethane or 1,4-diaminobutanhe to produce positively charged membrane chromatography. The concentration of NaOH activation from 0.05M to 0.50M and diamine monomer concentration from 0.25M to 2.0M during grafting were studied. The optimum concentration of NaOH was 0.20M which produced anion exchange membrane capacity of 0.310±0.033 mgBSA/cm2 membrane. High concentration of diamine monomer at 2.0M 1,4-diaminobutane showed a binding capacity of 0.385±0.027mgBSA/cm2 membrane. Based on FTIR transmission peak, both N-H and C-N functional groups were detected in modified membrane that indicated the successful of grafting process.