Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems

Osmotically assisted reverse osmosis (OARO) has been proposed as an innovative solution to recover more water from hypersaline water, surpassing the traditional RO method which is limited by the maximum pressure that the membrane can withstand. An accurate mathematical model is required to elucidate...

Full description

Saved in:
Bibliographic Details
Main Authors: Chong, Y. K., Li, M., Wiley, D. E., Fletcher, D. F., Liang, Yong Yeow
Format: Article
Language:English
English
Published: Elsevier 2024
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/42152/1/Review%20of%20modeling%20methodologies%20and%20state-of-the-art%20for%20osmotically.pdf
http://umpir.ump.edu.my/id/eprint/42152/2/Review%20of%20modeling%20methodologies%20and%20state-of-the-art%20for%20osmotically%20assisted%20reverse%20osmosis%20membrane%20systems.pdf
http://umpir.ump.edu.my/id/eprint/42152/
https://doi.org/10.1016/j.desal.2024.117893
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ump.umpir.42152
record_format eprints
spelling my.ump.umpir.421522024-08-05T00:40:56Z http://umpir.ump.edu.my/id/eprint/42152/ Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems Chong, Y. K. Li, M. Wiley, D. E. Fletcher, D. F. Liang, Yong Yeow Q Science (General) TP Chemical technology Osmotically assisted reverse osmosis (OARO) has been proposed as an innovative solution to recover more water from hypersaline water, surpassing the traditional RO method which is limited by the maximum pressure that the membrane can withstand. An accurate mathematical model is required to elucidate the mechanism of concentration polarization build-up at the inside and outside of the membrane so that these insights can be applied to design an efficient OARO system. This paper reviews state-of-the-art modeling methodologies for OARO using analytical and CFD models. While analytical models have been extensively employed for the design of OARO, the progress of computational models (i.e., CFD) still falls behind. Therefore, CFD methodologies for simulating OARO are demonstrated in this review using the classical and Brinkman porous media models. The sensitivity analysis demonstrates that the Brinkman porous media model is the most applicable for systems with low flux and a thick membrane porous layer. Lastly, future research directions related to OARO modeling are recommended. Elsevier 2024 Article PeerReviewed pdf en http://umpir.ump.edu.my/id/eprint/42152/1/Review%20of%20modeling%20methodologies%20and%20state-of-the-art%20for%20osmotically.pdf pdf en http://umpir.ump.edu.my/id/eprint/42152/2/Review%20of%20modeling%20methodologies%20and%20state-of-the-art%20for%20osmotically%20assisted%20reverse%20osmosis%20membrane%20systems.pdf Chong, Y. K. and Li, M. and Wiley, D. E. and Fletcher, D. F. and Liang, Yong Yeow (2024) Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems. Desalination, 587 (117893). pp. 1-15. ISSN 0011-9164. (Published) https://doi.org/10.1016/j.desal.2024.117893 10.1016/j.desal.2024.117893
institution Universiti Malaysia Pahang Al-Sultan Abdullah
building UMPSA Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang Al-Sultan Abdullah
content_source UMPSA Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
English
topic Q Science (General)
TP Chemical technology
spellingShingle Q Science (General)
TP Chemical technology
Chong, Y. K.
Li, M.
Wiley, D. E.
Fletcher, D. F.
Liang, Yong Yeow
Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
description Osmotically assisted reverse osmosis (OARO) has been proposed as an innovative solution to recover more water from hypersaline water, surpassing the traditional RO method which is limited by the maximum pressure that the membrane can withstand. An accurate mathematical model is required to elucidate the mechanism of concentration polarization build-up at the inside and outside of the membrane so that these insights can be applied to design an efficient OARO system. This paper reviews state-of-the-art modeling methodologies for OARO using analytical and CFD models. While analytical models have been extensively employed for the design of OARO, the progress of computational models (i.e., CFD) still falls behind. Therefore, CFD methodologies for simulating OARO are demonstrated in this review using the classical and Brinkman porous media models. The sensitivity analysis demonstrates that the Brinkman porous media model is the most applicable for systems with low flux and a thick membrane porous layer. Lastly, future research directions related to OARO modeling are recommended.
format Article
author Chong, Y. K.
Li, M.
Wiley, D. E.
Fletcher, D. F.
Liang, Yong Yeow
author_facet Chong, Y. K.
Li, M.
Wiley, D. E.
Fletcher, D. F.
Liang, Yong Yeow
author_sort Chong, Y. K.
title Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
title_short Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
title_full Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
title_fullStr Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
title_full_unstemmed Review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
title_sort review of modeling methodologies and state-of-the-art for osmotically assisted reverse osmosis membrane systems
publisher Elsevier
publishDate 2024
url http://umpir.ump.edu.my/id/eprint/42152/1/Review%20of%20modeling%20methodologies%20and%20state-of-the-art%20for%20osmotically.pdf
http://umpir.ump.edu.my/id/eprint/42152/2/Review%20of%20modeling%20methodologies%20and%20state-of-the-art%20for%20osmotically%20assisted%20reverse%20osmosis%20membrane%20systems.pdf
http://umpir.ump.edu.my/id/eprint/42152/
https://doi.org/10.1016/j.desal.2024.117893
_version_ 1822924566308061184
score 13.23648