Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation
The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium ad...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springerlink
2024
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/41688/1/Eco-friendly%20and%20cost-effective%20adsorbent%20derived%20from%20blast%20furnace%20slag.pdf http://umpir.ump.edu.my/id/eprint/41688/ https://doi.org/10.1007/s11356-023-31453-0 https://doi.org/10.1007/s11356-023-31453-0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.41688 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.416882024-07-31T03:23:15Z http://umpir.ump.edu.my/id/eprint/41688/ Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation Naggar, Ahmed Hosny Dhmees, Abdelghaffar S. Seaf-Elnasr, Tarek Ahmed Chong, Kwok Feng Ali, Gomaa A.M. Ali, Hazim Mohamed Kh Alshamery, Rasmih M. AlNahwa, Lubna H.M. Bakr, Al-Sayed A HD Industries. Land use. Labor Q Science (General) T Technology (General) The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents. Springerlink 2024-01-01 Article PeerReviewed pdf en cc_by_4 http://umpir.ump.edu.my/id/eprint/41688/1/Eco-friendly%20and%20cost-effective%20adsorbent%20derived%20from%20blast%20furnace%20slag.pdf Naggar, Ahmed Hosny and Dhmees, Abdelghaffar S. and Seaf-Elnasr, Tarek Ahmed and Chong, Kwok Feng and Ali, Gomaa A.M. and Ali, Hazim Mohamed and Kh Alshamery, Rasmih M. and AlNahwa, Lubna H.M. and Bakr, Al-Sayed A (2024) Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation. Environmental science and pollution research international, 31 (3). pp. 3872-3886. ISSN 1614-7499. (Published) https://doi.org/10.1007/s11356-023-31453-0 https://doi.org/10.1007/s11356-023-31453-0 |
institution |
Universiti Malaysia Pahang Al-Sultan Abdullah |
building |
UMPSA Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang Al-Sultan Abdullah |
content_source |
UMPSA Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
HD Industries. Land use. Labor Q Science (General) T Technology (General) |
spellingShingle |
HD Industries. Land use. Labor Q Science (General) T Technology (General) Naggar, Ahmed Hosny Dhmees, Abdelghaffar S. Seaf-Elnasr, Tarek Ahmed Chong, Kwok Feng Ali, Gomaa A.M. Ali, Hazim Mohamed Kh Alshamery, Rasmih M. AlNahwa, Lubna H.M. Bakr, Al-Sayed A Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
description |
The current investigation concerns with preparation eco-friendly and cost-effective adsorbent (mesoporous silica nanoparticles (SBL)) based on black liquor (BL) containing lignin derived from sugarcane bagasse and combining it with sodium silicate derived from blast furnace slag (BFS) for thorium adsorption. Thorium ions were adsorbed from an aqueous solution using the synthesized bio-sorbent (SBL), which was then assessed by X-ray diffraction, BET surface area analysis, scanning electron microscopy with energy dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FTIR). Th(IV) sorption properties, including the pH effect, uptake rate, and sorption isotherms across various temperatures were investigated. The maximum sorption capacity of Th(IV) on SBL is 158.88 mg/L at pH value of 4328 K, and 60 min contact time. We demonstrated that the adsorption processes comport well with pseudo-second-order and Langmuir adsorption models considering the kinetics and equilibrium data. According to thermodynamic inspections results, the Th(IV) adsorption process exhibited endothermic and random behavior suggested by positive ΔH° and ΔS° values, while the negative ΔG° values indicated a spontaneous sorption process. The maximum Th(IV) desorption from the loaded SBL (Th/SBL) was carried out at 0.25 M of NaHCO3 and 60 min of contact. Sorption/desorption processes have five successive cycles. Finally, this study suggests that the recycling of BFS and BL can be exploited for the procurement of a promising Th(IV) adsorbents. |
format |
Article |
author |
Naggar, Ahmed Hosny Dhmees, Abdelghaffar S. Seaf-Elnasr, Tarek Ahmed Chong, Kwok Feng Ali, Gomaa A.M. Ali, Hazim Mohamed Kh Alshamery, Rasmih M. AlNahwa, Lubna H.M. Bakr, Al-Sayed A |
author_facet |
Naggar, Ahmed Hosny Dhmees, Abdelghaffar S. Seaf-Elnasr, Tarek Ahmed Chong, Kwok Feng Ali, Gomaa A.M. Ali, Hazim Mohamed Kh Alshamery, Rasmih M. AlNahwa, Lubna H.M. Bakr, Al-Sayed A |
author_sort |
Naggar, Ahmed Hosny |
title |
Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
title_short |
Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
title_full |
Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
title_fullStr |
Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
title_full_unstemmed |
Eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
title_sort |
eco-friendly and cost-effective adsorbent derived from blast furnace slag with black liquor waste for hazardous remediation |
publisher |
Springerlink |
publishDate |
2024 |
url |
http://umpir.ump.edu.my/id/eprint/41688/1/Eco-friendly%20and%20cost-effective%20adsorbent%20derived%20from%20blast%20furnace%20slag.pdf http://umpir.ump.edu.my/id/eprint/41688/ https://doi.org/10.1007/s11356-023-31453-0 https://doi.org/10.1007/s11356-023-31453-0 |
_version_ |
1822924553744023552 |
score |
13.235796 |