Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid
This study presents the mathematical modelling of two dimensional boundary layer flow of hybrid nanofluid where the impact of viscous dissipation has been accentuated in the energy equation. The copper and aluminium oxide nanoparticles are considered in this study. The surface of the model is stretc...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Pushpa Publishing House
2021
|
Subjects: | |
Online Access: | http://umpir.ump.edu.my/id/eprint/33408/1/Influence%20of%20viscous%20dissipation%20on%20the%20boundary%20layer%20flow%20of%20Cu-Al2O3%20hybrid%20nanofluid.pdf http://umpir.ump.edu.my/id/eprint/33408/ https://doi.org/10.17654/HM023020235 https://doi.org/10.17654/HM023020235 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
my.ump.umpir.33408 |
---|---|
record_format |
eprints |
spelling |
my.ump.umpir.334082022-12-27T09:11:05Z http://umpir.ump.edu.my/id/eprint/33408/ Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid Bing, Kho Yap Rahimah, Jusoh Mohd Zuki, Salleh Zulkhibri, Ismail Mohd Hisyam, Ariff QA Mathematics T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering This study presents the mathematical modelling of two dimensional boundary layer flow of hybrid nanofluid where the impact of viscous dissipation has been accentuated in the energy equation. The copper and aluminium oxide nanoparticles are considered in this study. The surface of the model is stretched and shrunk at certain values of stretching/shrinking parameter. The partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the utilization of the suitable similarity transformations. Then Matlab software is utilized to produce the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are obtained with the correct guess values. The insertion of viscous dissipation in this model tremendously lessens the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter and concentration of copper enhance the magnitude of the reduced skin friction coefficient while the augmentation of the aluminium oxide nanoparticles shows a different trend. Pushpa Publishing House 2021-08 Article PeerReviewed pdf en cc_by_4 http://umpir.ump.edu.my/id/eprint/33408/1/Influence%20of%20viscous%20dissipation%20on%20the%20boundary%20layer%20flow%20of%20Cu-Al2O3%20hybrid%20nanofluid.pdf Bing, Kho Yap and Rahimah, Jusoh and Mohd Zuki, Salleh and Zulkhibri, Ismail and Mohd Hisyam, Ariff (2021) Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid. JP Journal of Heat and Mass Transfer, 23 (2). pp. 235-246. ISSN 0973-5763 https://doi.org/10.17654/HM023020235 https://doi.org/10.17654/HM023020235 |
institution |
Universiti Malaysia Pahang |
building |
UMP Library |
collection |
Institutional Repository |
continent |
Asia |
country |
Malaysia |
content_provider |
Universiti Malaysia Pahang |
content_source |
UMP Institutional Repository |
url_provider |
http://umpir.ump.edu.my/ |
language |
English |
topic |
QA Mathematics T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering |
spellingShingle |
QA Mathematics T Technology (General) TA Engineering (General). Civil engineering (General) TK Electrical engineering. Electronics Nuclear engineering Bing, Kho Yap Rahimah, Jusoh Mohd Zuki, Salleh Zulkhibri, Ismail Mohd Hisyam, Ariff Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid |
description |
This study presents the mathematical modelling of two dimensional boundary layer flow of hybrid nanofluid where the impact of viscous dissipation has been accentuated in the energy equation. The copper and aluminium oxide nanoparticles are considered in this study. The surface of the model is stretched and shrunk at certain values of stretching/shrinking parameter. The partial differential equations of the hybrid nanofluid are reduced to the ordinary differential equations with the utilization of the suitable similarity transformations. Then Matlab software is utilized to produce the numerical and graphical results by implementing the bvp4c function. Subsequently, dual solutions are obtained with the correct guess values. The insertion of viscous dissipation in this model tremendously lessens the rate of heat transfer. Besides, the effects of the suction and nanoparticles concentration also have been highlighted. An increment in the suction parameter and concentration of copper enhance the magnitude of the reduced skin friction coefficient while the augmentation of the aluminium oxide nanoparticles shows a different trend. |
format |
Article |
author |
Bing, Kho Yap Rahimah, Jusoh Mohd Zuki, Salleh Zulkhibri, Ismail Mohd Hisyam, Ariff |
author_facet |
Bing, Kho Yap Rahimah, Jusoh Mohd Zuki, Salleh Zulkhibri, Ismail Mohd Hisyam, Ariff |
author_sort |
Bing, Kho Yap |
title |
Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid |
title_short |
Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid |
title_full |
Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid |
title_fullStr |
Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid |
title_full_unstemmed |
Influence of viscous dissipation on the boundary layer flow of Cu-Al2O3 hybrid nanofluid |
title_sort |
influence of viscous dissipation on the boundary layer flow of cu-al2o3 hybrid nanofluid |
publisher |
Pushpa Publishing House |
publishDate |
2021 |
url |
http://umpir.ump.edu.my/id/eprint/33408/1/Influence%20of%20viscous%20dissipation%20on%20the%20boundary%20layer%20flow%20of%20Cu-Al2O3%20hybrid%20nanofluid.pdf http://umpir.ump.edu.my/id/eprint/33408/ https://doi.org/10.17654/HM023020235 https://doi.org/10.17654/HM023020235 |
_version_ |
1753788557104775168 |
score |
13.214268 |