The employment of Support Vector Machine to classify high and low performance archers based on bio-physiological variables

The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from...

Full description

Saved in:
Bibliographic Details
Main Authors: Zahari, Taha, Musa, Rabiu Muazu, Anwar, P. P. Abdul Majeed, Mohamad Razali, Abdullah, Muhammad Amirul, Abdullah, M. H. A., Hassan, Zubair, Khalil
Format: Conference or Workshop Item
Language:English
Published: IOP Publishing 2018
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/21233/1/employment%20of%20Support%20Vector%20Machine%20to%20classify%20high-fkp-2018.pdf
http://umpir.ump.edu.my/id/eprint/21233/
https://doi.org/10.1088/1757-899X/342/1/012020
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study employs a machine learning algorithm namely support vector machine (SVM) to classify high and low potential archers from a collection of bio-physiological variables trained on different SVMs. 50 youth archers with the average age and standard deviation of (17.0 ±.056) gathered from various archery programmes completed a one end shooting score test. The bio-physiological variables namely resting heart rate, resting respiratory rate, resting diastolic blood pressure, resting systolic blood pressure, as well as calories intake, were measured prior to their shooting tests. k-means cluster analysis was applied to cluster the archers based on their scores on variables assessed. SVM models i.e. linear, quadratic and cubic kernel functions, were trained on the aforementioned variables. The k-means clustered the archers into high (HPA) and low potential archers (LPA), respectively. It was demonstrated that the linear SVM exhibited good accuracy with a classification accuracy of 94% in comparison the other tested models. The findings of this investigation can be valuable to coaches and sports managers to recognise high potential athletes from the selected bio-physiological variables examined.