Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy

This study highlights the scratch adhesion failure characterization and tribo-mechanical properties of physical vapor deposited (Cr, Ti) N coating on AA7075-T6 by using magnetron-sputtering technique. The surface morphology, microstructure and chemical composition of CrTi/CrTiN fim were inspected b...

Full description

Saved in:
Bibliographic Details
Main Authors: Quazi, M. M., M., Ishak, Arslan, A., M. Nasir, Bashir, Imran, Ali
Format: Article
Language:English
Published: Taylor & Francis 2018
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/19229/1/fkm-2018-mishak-Scratch%20Adhesion%20and%20Wear%20Failure%20Characteristics1.pdf
http://umpir.ump.edu.my/id/eprint/19229/
https://doi.org/10.1080/01694243.2017.1373988
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ump.umpir.19229
record_format eprints
spelling my.ump.umpir.192292018-03-07T06:41:19Z http://umpir.ump.edu.my/id/eprint/19229/ Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy Quazi, M. M. M., Ishak Arslan, A. M. Nasir, Bashir Imran, Ali TJ Mechanical engineering and machinery This study highlights the scratch adhesion failure characterization and tribo-mechanical properties of physical vapor deposited (Cr, Ti) N coating on AA7075-T6 by using magnetron-sputtering technique. The surface morphology, microstructure and chemical composition of CrTi/CrTiN fim were inspected by an optical microscope, scanning electron microscope (SEM) incorporated with energy dispersive X-ray spectroscopy (EDX) in addition to focused ion beam milling. The coating to substrate critical load of about 1261 mN was obtained, by employing coating deposition parameters of; DC power (300 W, RF power (200 W)), temperature (300 °C) and nitrogen flw rate (6%). Failure adhesion characteristics exhibited initial arc-tensile cracking followed by chipping and spallation that led to complete coating failure at Lc3. The tribo-mechanical aspects were evaluated by a pinon-plate reciprocating testing unit, which showed a lower friction coeffient of 0.36 for CrTiN as compared with 0.43 for AA7075-T6. Subsequently, the wear depth was also reduced from 9.5 to 5.9 μm. It was revealed that the wear mechanism for AA7075-T6 was extensive deformation, abrasion and delamination, while the CrTiN exhibited slightly oxidative abrasive wear mode. Taylor & Francis 2018-09-07 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/19229/1/fkm-2018-mishak-Scratch%20Adhesion%20and%20Wear%20Failure%20Characteristics1.pdf Quazi, M. M. and M., Ishak and Arslan, A. and M. Nasir, Bashir and Imran, Ali (2018) Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy. Journal of Adhesion Science and Technology, 32 (6). pp. 625-641. ISSN 0169-4243 https://doi.org/10.1080/01694243.2017.1373988 doi: 10.1080/01694243.2017.1373988
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic TJ Mechanical engineering and machinery
spellingShingle TJ Mechanical engineering and machinery
Quazi, M. M.
M., Ishak
Arslan, A.
M. Nasir, Bashir
Imran, Ali
Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy
description This study highlights the scratch adhesion failure characterization and tribo-mechanical properties of physical vapor deposited (Cr, Ti) N coating on AA7075-T6 by using magnetron-sputtering technique. The surface morphology, microstructure and chemical composition of CrTi/CrTiN fim were inspected by an optical microscope, scanning electron microscope (SEM) incorporated with energy dispersive X-ray spectroscopy (EDX) in addition to focused ion beam milling. The coating to substrate critical load of about 1261 mN was obtained, by employing coating deposition parameters of; DC power (300 W, RF power (200 W)), temperature (300 °C) and nitrogen flw rate (6%). Failure adhesion characteristics exhibited initial arc-tensile cracking followed by chipping and spallation that led to complete coating failure at Lc3. The tribo-mechanical aspects were evaluated by a pinon-plate reciprocating testing unit, which showed a lower friction coeffient of 0.36 for CrTiN as compared with 0.43 for AA7075-T6. Subsequently, the wear depth was also reduced from 9.5 to 5.9 μm. It was revealed that the wear mechanism for AA7075-T6 was extensive deformation, abrasion and delamination, while the CrTiN exhibited slightly oxidative abrasive wear mode.
format Article
author Quazi, M. M.
M., Ishak
Arslan, A.
M. Nasir, Bashir
Imran, Ali
author_facet Quazi, M. M.
M., Ishak
Arslan, A.
M. Nasir, Bashir
Imran, Ali
author_sort Quazi, M. M.
title Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy
title_short Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy
title_full Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy
title_fullStr Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy
title_full_unstemmed Scratch Adhesion and Wear Failure Characteristics of PVD multilayer CrTi/CrTiN Thin Film Ceramic Coating Deposited on AA7075-T6 Aerospace Alloy
title_sort scratch adhesion and wear failure characteristics of pvd multilayer crti/crtin thin film ceramic coating deposited on aa7075-t6 aerospace alloy
publisher Taylor & Francis
publishDate 2018
url http://umpir.ump.edu.my/id/eprint/19229/1/fkm-2018-mishak-Scratch%20Adhesion%20and%20Wear%20Failure%20Characteristics1.pdf
http://umpir.ump.edu.my/id/eprint/19229/
https://doi.org/10.1080/01694243.2017.1373988
_version_ 1643668631195746304
score 13.2014675