Engineering Properties of Clayey Soil Stabilized with Lime

Kaolin soil represents the soft clay soil with a depleted bearing capacity and an elevated compressibility level. Thus, in order to hold up civil structures, the bearing capacity of kaolin soil needs to be raised. Several soil improvement procedures are currently available. These include soil replac...

Full description

Saved in:
Bibliographic Details
Main Authors: Alrubaye, Ali Jamal, Muzamir, Hasan, Fattah, Mohammed Y.
Format: Article
Language:English
English
Published: Asian Research Publishing Network (ARPN) 2016
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/13469/1/engineering%20properties%20of%20clayey%20soil%20stabilized%20with%20lime.pdf
http://umpir.ump.edu.my/id/eprint/13469/7/fkasa-2016-muzamir-engineering%20properties%20of%20clayey%20soil%20stabilized%20with%20lime.pdf
http://umpir.ump.edu.my/id/eprint/13469/
http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0216_3664.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ump.umpir.13469
record_format eprints
spelling my.ump.umpir.134692018-02-06T07:48:25Z http://umpir.ump.edu.my/id/eprint/13469/ Engineering Properties of Clayey Soil Stabilized with Lime Alrubaye, Ali Jamal Muzamir, Hasan Fattah, Mohammed Y. T Technology (General) Kaolin soil represents the soft clay soil with a depleted bearing capacity and an elevated compressibility level. Thus, in order to hold up civil structures, the bearing capacity of kaolin soil needs to be raised. Several soil improvement procedures are currently available. These include soil replacement, preloading, corduroy and chemical stabilization. However, as these procedures are harmful to the environment, efforts to achieve soil stabilization ought to make use of materials that are environmentally friendly. The utilization of industrial waste that does not have a negative impact on the environment would represent a significant step forward in this area. Among the most frequently employed procedures to achieve soil stabilization is the utilization of a binder such as lime. This study puts forward an array of laboratory investigations to assess the influence of lime on the compressibility and swelling traits of soil. According to the findings, the liquid limit and plasticity index of soil is reduced with the introduction of lime. Pozzolanic reactions transpire due to the siliceous and aluminous nature of the material which has a negligible cementation value and is made up of large particles. This circumstance culminates in a reduction of the liquid limit. With a 9% application of lime, an elevation in the liquid limit was observed (a decrease in other reaction materials). This is attributed to the excessive presence of lime. The optimal water content rose from 20% to 23% with a 5% application of lime. The stabilizer content (lime) reduces the maximum dry density from 1.63 to 1.585 g/cm3. Lime content enhances the compressibility of soft clay by lowering the coefficient of volume compressibility (mv) reduces with increasing stabilizer content and the optimum percent for lime. This is a result of the reaction between lime and soil. Asian Research Publishing Network (ARPN) 2016-02 Article PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/13469/1/engineering%20properties%20of%20clayey%20soil%20stabilized%20with%20lime.pdf application/pdf en http://umpir.ump.edu.my/id/eprint/13469/7/fkasa-2016-muzamir-engineering%20properties%20of%20clayey%20soil%20stabilized%20with%20lime.pdf Alrubaye, Ali Jamal and Muzamir, Hasan and Fattah, Mohammed Y. (2016) Engineering Properties of Clayey Soil Stabilized with Lime. ARPN Journal of Engineering and Applied Sciences, 11 (4). pp. 2434-2441. ISSN 1819-6608 http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0216_3664.pdf
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
English
topic T Technology (General)
spellingShingle T Technology (General)
Alrubaye, Ali Jamal
Muzamir, Hasan
Fattah, Mohammed Y.
Engineering Properties of Clayey Soil Stabilized with Lime
description Kaolin soil represents the soft clay soil with a depleted bearing capacity and an elevated compressibility level. Thus, in order to hold up civil structures, the bearing capacity of kaolin soil needs to be raised. Several soil improvement procedures are currently available. These include soil replacement, preloading, corduroy and chemical stabilization. However, as these procedures are harmful to the environment, efforts to achieve soil stabilization ought to make use of materials that are environmentally friendly. The utilization of industrial waste that does not have a negative impact on the environment would represent a significant step forward in this area. Among the most frequently employed procedures to achieve soil stabilization is the utilization of a binder such as lime. This study puts forward an array of laboratory investigations to assess the influence of lime on the compressibility and swelling traits of soil. According to the findings, the liquid limit and plasticity index of soil is reduced with the introduction of lime. Pozzolanic reactions transpire due to the siliceous and aluminous nature of the material which has a negligible cementation value and is made up of large particles. This circumstance culminates in a reduction of the liquid limit. With a 9% application of lime, an elevation in the liquid limit was observed (a decrease in other reaction materials). This is attributed to the excessive presence of lime. The optimal water content rose from 20% to 23% with a 5% application of lime. The stabilizer content (lime) reduces the maximum dry density from 1.63 to 1.585 g/cm3. Lime content enhances the compressibility of soft clay by lowering the coefficient of volume compressibility (mv) reduces with increasing stabilizer content and the optimum percent for lime. This is a result of the reaction between lime and soil.
format Article
author Alrubaye, Ali Jamal
Muzamir, Hasan
Fattah, Mohammed Y.
author_facet Alrubaye, Ali Jamal
Muzamir, Hasan
Fattah, Mohammed Y.
author_sort Alrubaye, Ali Jamal
title Engineering Properties of Clayey Soil Stabilized with Lime
title_short Engineering Properties of Clayey Soil Stabilized with Lime
title_full Engineering Properties of Clayey Soil Stabilized with Lime
title_fullStr Engineering Properties of Clayey Soil Stabilized with Lime
title_full_unstemmed Engineering Properties of Clayey Soil Stabilized with Lime
title_sort engineering properties of clayey soil stabilized with lime
publisher Asian Research Publishing Network (ARPN)
publishDate 2016
url http://umpir.ump.edu.my/id/eprint/13469/1/engineering%20properties%20of%20clayey%20soil%20stabilized%20with%20lime.pdf
http://umpir.ump.edu.my/id/eprint/13469/7/fkasa-2016-muzamir-engineering%20properties%20of%20clayey%20soil%20stabilized%20with%20lime.pdf
http://umpir.ump.edu.my/id/eprint/13469/
http://www.arpnjournals.org/jeas/research_papers/rp_2016/jeas_0216_3664.pdf
_version_ 1643667172646453248
score 13.18916