Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks

The pollution discharge has influence the chemical composition of Muar River where studied was carried out using the Environmetric Techniques and the Artificial Neural Networks (ANNs) model. Environmetric method, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA),...

Full description

Saved in:
Bibliographic Details
Main Author: Putri Shazlia, Rosman
Format: Conference or Workshop Item
Language:English
Published: 2015
Subjects:
Online Access:http://umpir.ump.edu.my/id/eprint/10221/1/Water%20Quality%20Assessment%20of%20Muar%20River%20Using%20Environmetric%20Techniques%20and%20Artificial%20Neural%20Networks.pdf
http://umpir.ump.edu.my/id/eprint/10221/
Tags: Add Tag
No Tags, Be the first to tag this record!
id my.ump.umpir.10221
record_format eprints
spelling my.ump.umpir.102212018-02-05T07:19:44Z http://umpir.ump.edu.my/id/eprint/10221/ Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks Putri Shazlia, Rosman T Technology (General) The pollution discharge has influence the chemical composition of Muar River where studied was carried out using the Environmetric Techniques and the Artificial Neural Networks (ANNs) model. Environmetric method, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA) and the factor analysis (FA) to study the spatial variations of water quality variables and to determine the origin sources of pollution. ANNs model was used to predict linear relationship between water quality variables, the most significant variables that influence Muar River as well as sources of apportionment pollution. HACA observed three spatial clusters were formed. DA managed to discriminate 16 and 19 water quality variables thru forward and backward stepwise. Eight principal components were found responsible for the data structure and 67.7% of the total variance of the data set in PCA/FA analysis. ANNs analysis, strong relationship correlation was observed between salinity, conductivity, DS, TS, Cl, Ca, K, Mg and Na (r = 0.954 to 0.997), moderate relationship observed between COD and E.coli (r = 0.449) and Cd and Pb (r = 0.492) and others variables have no significant correlation. pH was the most significant variables (51.6%) and Fe was less significant variables (-0.52%). The major sources of pollution of the river were due to natural degradation / natural process that affecting the pH value of the river. Other pollution contribution was from anthropogenic sources such as agricultural runoff, industrial discharge, domestic waste, natural erosion, livestock farming and present of nitrogenous species. The ANNs showed better prediction in identified most significant variable compare to Environmetric techniques. ANNs is an effective tool in decision making and problem solving for local/global environmental issues. 2015 Conference or Workshop Item PeerReviewed application/pdf en http://umpir.ump.edu.my/id/eprint/10221/1/Water%20Quality%20Assessment%20of%20Muar%20River%20Using%20Environmetric%20Techniques%20and%20Artificial%20Neural%20Networks.pdf Putri Shazlia, Rosman (2015) Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks. In: Proceeding of Engineering Technology International Conference (ETIC 2015), 10-11 August 2015 , Bali, Indonesia. pp. 1-8..
institution Universiti Malaysia Pahang
building UMP Library
collection Institutional Repository
continent Asia
country Malaysia
content_provider Universiti Malaysia Pahang
content_source UMP Institutional Repository
url_provider http://umpir.ump.edu.my/
language English
topic T Technology (General)
spellingShingle T Technology (General)
Putri Shazlia, Rosman
Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks
description The pollution discharge has influence the chemical composition of Muar River where studied was carried out using the Environmetric Techniques and the Artificial Neural Networks (ANNs) model. Environmetric method, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA) and the factor analysis (FA) to study the spatial variations of water quality variables and to determine the origin sources of pollution. ANNs model was used to predict linear relationship between water quality variables, the most significant variables that influence Muar River as well as sources of apportionment pollution. HACA observed three spatial clusters were formed. DA managed to discriminate 16 and 19 water quality variables thru forward and backward stepwise. Eight principal components were found responsible for the data structure and 67.7% of the total variance of the data set in PCA/FA analysis. ANNs analysis, strong relationship correlation was observed between salinity, conductivity, DS, TS, Cl, Ca, K, Mg and Na (r = 0.954 to 0.997), moderate relationship observed between COD and E.coli (r = 0.449) and Cd and Pb (r = 0.492) and others variables have no significant correlation. pH was the most significant variables (51.6%) and Fe was less significant variables (-0.52%). The major sources of pollution of the river were due to natural degradation / natural process that affecting the pH value of the river. Other pollution contribution was from anthropogenic sources such as agricultural runoff, industrial discharge, domestic waste, natural erosion, livestock farming and present of nitrogenous species. The ANNs showed better prediction in identified most significant variable compare to Environmetric techniques. ANNs is an effective tool in decision making and problem solving for local/global environmental issues.
format Conference or Workshop Item
author Putri Shazlia, Rosman
author_facet Putri Shazlia, Rosman
author_sort Putri Shazlia, Rosman
title Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks
title_short Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks
title_full Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks
title_fullStr Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks
title_full_unstemmed Water Quality Assessment of Muar River Using Environmetric Techniques and Artificial Neural Networks
title_sort water quality assessment of muar river using environmetric techniques and artificial neural networks
publishDate 2015
url http://umpir.ump.edu.my/id/eprint/10221/1/Water%20Quality%20Assessment%20of%20Muar%20River%20Using%20Environmetric%20Techniques%20and%20Artificial%20Neural%20Networks.pdf
http://umpir.ump.edu.my/id/eprint/10221/
_version_ 1643666333572792320
score 13.214268